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1 Our Dataset
1.1 Layout Annotations
1.1.1 FCN Details

Motivated by the outstanding performance of fully convolutional neural networks (FCNs) [Long et al. 2015] on semantic segmentation, we
exploit FCNs for semantic layout annotation of our pages. The input to our FCN is an image of size 500 × 500 × 3 (3 for RGB channels),
and the output is a mask with a predicted class label for each pixel. Our FCN architecture is based on the FCN-8s network [Long et al. 2015].
We set the number of classes to 6. Since we can only train on a small set of examples, we reduce the number of units in the last two fully
connected layers from 4096 to 1024 to prevent overfitting.

We train and test our FCN on a manually-labeled dataset, which is split into 498 pages for training and another 118 pages for testing. In order
to alleviate overfitting and improve generalization, we augment our training and test splits by rescaling the height of each page to 384, 512,
640, 768, 896, and 1024, while maintaining the aspect ratio. In this way, we end up with a total of 2, 988 pages for training and 708 pages
for testing. We initialize the weights of the first 13 convolutional layers using the FCN-8s network pre-trained on PASCAl VOC, and fix the
weights of the first 9 convolutional layers. The parameters of the FCN are learned by minimizing a cross-entropy loss. Our FCN is trained
with stochastic gradient decent for 55 epochs, resulting in an accuracy of 93.6% on the test data.

To annotate the pages in our dataset, we rescale the height of each page in the dataset to 1, 024 while maintaining the aspect ratio, and feed it
into our FCN.

Page FCN Auto-refine Manual-refine Page FCN Auto-refine Manual-refine

Figure 1: Results of our FCN, automatic refinement (Auto-refine), and manual refinement (Manual-refine).

1.1.2 Refinement of FCN Segmentation Results

After FCN segmentation, each segmentation result is refined via an automatic refinement step. In particular, given a FCN segmentation result,
we first divide it into two masks: one with images and the other with texts and headlines. We then extract individual elements from these two
masks via connected component labeling. The holes in the image mask are filled if they contain text elements that occupy larger than 40% of
the hole area. We finally apply refinement operations to these two masks to remove noise and rectify element boundaries.



Our refinement starts with a boundary refinement method, to approximate the boundaries of elements with straight lines, which is detailed
as follows. Let h and w be the height and width of the mask. We approximate an element using its bounding box, if its area is less than
as = 10Sr × Sc (where Sr = h/60 and Sc = w/45) and the ratio of its area to the area of its bounding box is larger than e = 95%. The
boundaries of such elements are approximated with the corresponding bounding boxes. For each of the remaining elements, we detect the
weak connections where the number of consecutive 1’s are less than 2Sc in the horizontal direction and 2Sr in the vertical direction, and
replace them with 0’s to form a new mask. A set of new elements, referred to as large elements, are extracted from this new mask. For each
of the large elements, we use a boundary approximation method to refine its boundaries. In particular, given an element, we detect each of its
outer boundaries as a sequence of points, and smoothen it using 5-point moving average. For each of the smooth boundaries, we approximate
it with a straight line based on clustering the coordinates of its points. More specifically, for a left or right boundary, we first cluster the
horizontal coordinates of its points based on a threshold of 2. We restrict the maximum number of clusters to 3. Then, for the points of the
same cluster, we replace their horizontal coordinate values with the mean horizontal coordinate value of the cluster. A top or bottom boundary
is processed in the same way but based on vertical coordinates. In this way, the outer boundaries of all large elements are refined. For the
inner boundaries of all large elements, we detect the holes and treat them as inner elements, resulting in a hole mask. The boundaries of these
inner elements are then refined using the same method as the outer boundaries. After refining the boundaries of the elements, we update the
labels of the elements. In particular, for each element in the mask with texts and headlines, we first compute the frequencies of occurrences
of the 4 labels (i.e., Text, Headline, Text-over-image, and Headline-over-image) among all the pixels belonging to this element in the FCN
segmentation result. We then assign the element with the most frequently occurring label. Finally, we merge the two masks to get automatic
refinement result.

Based on the automatic refinement result, we further refine the segmentation manually to address other remaining issues (e.g., incorrect
element labels and incomplete element regions). Table 1 shows the pixel accuracy and region intersection over union (IoU) of the FCN
segmentation results and those after automatic refinement, which are computed with the manually refined segmentation as the ground truth.
We can observe that our automatic refinement improves the pixel accuracy and the IoU of the segmentation results, especially for Text-over-
image and Headline-over-image. Figure 1 shows some results of FCN, automatic refinement and manual refinement.

Table 1: Pixel accuracy and IoU of FCN (FCN) and automatic refinement (Auto-refine).

Element type Pixel accuracy (FCN) Pixel accuracy (Auto-refine) IoU (FCN) IoU (Auto-refine)
Text 77% 78% 72% 75%

Image 92% 92% 87% 88%
Headline 59% 62% 38% 47%

Text-over-image 27% 59% 25% 57%
Headline-over-image 25% 47% 20% 38%

Background 92% 95% 75% 76%

1.2 Extracted Keywords
Table 2 shows the top 10 keywords in each category-specific keyword list.

Table 2: The top 10 keywords for each category.

Fashion woman, love, life, friend, style, skin, wear, fashion, dress, top
Food top, salt, stir, heat, place, taste, recipe, dish, cool, season
News country, life, government, woman, man, decade, talk, power, state, child
Science study, scientist, life, place, earth, researcher, university, decade, science, research
Travel place, life, love, visit, house, country, garden, view, family, top
Wedding wedding, guest, love, bride, style, couple, ceremony, dress, venue, family

1.3 Statistics of Our Dataset
Our dataset contains 3, 919 magazine pages obtained from the Internet, covering 6 common categories, including fashion, food, news, science,
travel and wedding. The numbers of pages for the 6 categories are 685, 753, 618, 509, 721, and 633, respectively. We encode the layout of
each page with 6 different types of labels, including Text, Image, Headline, Text-over-image, Headline-over-image and Background. Pages
from different categories exhibit diverse layouts, in terms of number, size and spatial location of page elements. We show the statistics of our
dataset on the number, size and occupation percentage of the 5 element types (i.e., Text, Image, Headline, Text-over-image and Headline-
over-image) in Figures 2, 3 and 4. From these figures, we can see that the magazine pages in our dataset have diverse layout structures. For
example, some pages exhibit heavy text, while some pages have one or several large images alongside little text. In addition, the pages from
different categories show different layout structures. For example, the pages from the fashion category tend to have larger images, while the
pages from the news category often exhibit heavier text.

Figure 5 shows the spatial distributions of the 6 element types on a page for different categories in the dataset. The elements tend to be
uniformly distributed over the entire page, especially for Text, Image and Text-over-image elements. This demonstrates the diversity of our
dataset in terms of spatial layout of page elements. Figure 6 shows some examples from each magazine category in our dataset.
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Figure 2: Distribution of the number of elements for each of the 5 element types (from left to right) on a single page within each of the 6
magazine categories (from top to bottom). The vertical axis indicates the percentage of pages in the dataset.
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Figure 3: Distribution of the normalized area for each of the 5 element types (from left to right) on a single page within each of the 6
magazine categories (from top to bottom). The vertical axis indicates the percentage of pages in the dataset.
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Figure 4: Distribution of the occupation percentage for each of the 5 element types (from left to right) on a single page within each of the 6
magazine categories (from top to bottom). The vertical axis indicates the percentage of pages in the dataset.
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Figure 5: Spatial distribution of the 6 element types (from left to right) on a page within each of the 6 magazine categories. The color of a
pixel indicates the probability of an element type appearing at the pixel.
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Figure 6: Some examples from each category in our dataset. Each example contains a magazine page (top left), a labeled layout (top right),
and example keywords (bottom).



2 Our Model
2.1 Architecture of the Layout Generative Network
Table 3 shows the architecture of the layout generative network in our model.

Layout encoder. The input of the encoder is a real layout x, which is represented by a multi-channel image-based representation (60×45×3)
and transformed to 64×64×3 by padding with 0’s. The feature map of the fourth convolutional layer is first concatenated with a 60×45×128
feature map (which is formed by duplicating the corresponding 128-dimensional multi-modal feature vector along the spatial dimensions)
and then passed through two convolutional layers. Finally, the encoder produces two feature vectors of size 128 to represent the mean and
standard deviation of a Gaussian distribution. A sample from this Gaussian distribution is used as a random latent vector E(x,y). Note that
Batch Normalization (BN) is not applied to the first and last convolutional layers. The first four convolutional layers use Leaky ReLU as
activation functions.

Layout generator. The input of the generator is a concatenation of a 128-dimensional random latent vector z from a standard Normal
distribution and a 128-dimensional multi-modal feature vector y. The output of the generator is a generated layout G(z,y) of size 64×64×3,
which is then converted to 60 × 45 × 3 by removing the padded 0’s. The first layer of the generator is a fully connected layer of size 8, 192,
whose output is then reshaped to 4 × 4 × 512 for further processing. All the remaining layers are deconvolutional layers with Batch
Normalization and ReLU activation functions, except for the last layer, where Batch Normalization is not used and the activation function is
Tanh.

Discriminator. The input of the discriminator is a joint pair and y, and the output of the discriminator is a confidence value indicating whether
the input is real or generated. The joint pair can be either (G(z,y), z) or (x, E(x,y)). The multi-modal feature vector y is first duplicated
along spatial dimensions to form a 60× 45× 128 feature map, which is then concatenated with the layout (x or G(z,y)) and passed through
a series of convolutional layers. The output of the last convolutional layer is concatenated with the random latent vector (E(x,y) or z), and
passed through a fully connected layer to produce a 1-dimensional output. Similar to the architecture of the encoder, Batch Normalization
is used for all the convolutional layers except for the first and last ones. The first four convolutional layers use Leaky ReLU as activation
functions.

Table 3: Hyperparameters of the layout generative network.

Module Operation Kernel Size Strides BN Activation Output Size

Layout encoder
Input: x (64× 64× 3), y (128)

Output: E(x,y) (128)

Convolution 5 2 No Leaky ReLU 32× 32× 64

Convolution 5 2 Yes Leaky ReLU 16× 16× 128

Convolution 5 2 Yes Leaky ReLU 8× 8× 256

Convolution 5 2 Yes Leaky ReLU 4× 4× 512

Concatenation Duplicate y spatially and concatenate the result with the output of the previous layer 4× 4× 640

Convolution
4 1 No No 128

4 1 No No 128

Layout generator
Input: z (128), y (128)

Output: G(z,y) (64× 64× 3)

Concatenation Concatenate input z and y 256

Fully Connected No No Yes ReLU 4× 4× 512

Deconvolution 5 2 Yes ReLU 8× 8× 256

Deconvolution 5 2 Yes ReLU 16× 16× 128

Deconvolution 5 2 Yes ReLU 32× 32× 64

Deconvolution 5 2 No Tanh 64× 64× 3

Discriminator
Input: x (64× 64× 3), z (128), y (128)

Output: Real or not (1)

Concatenation Duplicate y spatially and concatenate the result with x 64× 64× 131

Convolution 5 2 No Leaky ReLU 32× 32× 64

Convolution 5 2 Yes Leaky ReLU 16× 16× 128

Convolution 5 2 Yes Leaky ReLU 8× 8× 256

Convolution 5 2 Yes Leaky ReLU 4× 4× 512

Convolution 4 1 No No 128

Concatenation Concatenate the output of the previous layer and z 256

Fully Connected No No No Leaky ReLU 1

2.2 Architecture of the Multi-modal Embedding Network
Table 4 shows the architecture of the multi-modal embedding network in our model.

Image encoder. We send each image to a pre-trained VGG16 model [Simonyan and Zisserman 2015], to extract a 14 × 14 × 521 image
representation. All the image representations within one page are summed up to get a 14 × 14 × 512 representation. We then apply global
average pooling forming a 512-dimensional vector. This vector is then fed into 3 fully connected layers, resulting in a 128-dimensional image
vector.

Text encoder. For each page, there is a list of keywords. Each keyword is projected into a 300-dimensional word embedding vector using
word2vec [Mikolov et al. 2013]. All the word embedding vectors for a page are summed up, and then fed into 3 fully connected layers to get
a 128-dimensional text vector.

Attribute encoder. The inputs to the attribute encoder are 3 vectors, representing the category (b1), text proportion (b2) and image proportion
(b3). Each vector is duplicated 10 times and fed into a fully connected layer, resulting in three output vectors (bo1, bo2, bo3). The output



Table 4: Hyperparameters of the multi-modal embedding network.

Module Operation Kernel Size Strides BN Activation Output Size
Image encoder

Input: (512)
Output: i (128)

Fully Connected No No No ReLU 512

Fully Connected No No No ReLU 256

Fully Connected No No No ReLU 128

Text encoder
Input: (300)

Output: t (128)

Fully Connected No No No ReLU 256

Fully Connected No No No ReLU 256

Fully Connected No No No ReLU 128

Attribute encoder

Category embedding
Input: b1 (6). Output: bo1 (48)

Duplication Duplicate b1 10 times 60

Fully Connected No No No ReLU 48

Text proportion embedding
Input: b2 (7). Output: bo2 (48)

Duplication Duplicate b2 10 times 70

Fully Connected No No No ReLU 48

Image proportion embedding
Input: b3 (10). Output: bo3 (48)

Duplication Duplicate b3 10 times 100

Fully Connected No No No ReLU 48

Concatenation
Input: bo1 (48), bo2 (48), bo3 (48). Output: b (32)

Concatenation Concatenate bo1, bo2, bo3 144

Fully Connected No No No ReLU 32

Fusion
Input: i (128), t (128), b (32)

Output: y (128)

Concatenation Concatenate i, t, b 288

Fully Connected No No No ReLU 256

Fully Connected No No No ReLU 128

vectors are then concatenated and passed through a fully connected layer to form a 32-dimensional attribute vector (b).

Fusion layer. The image vector, text vector, and attribute vector are then jointly learned through a fusion layer (including 2 fully connected
layers), resulting in a 128-dimensional multi-modal feature vector y to condition the layout generative network.

2.3 Refinement of the Generator Output
The output of the generator is a layout image (64 × 64 × 3), which is first transformed to 60 × 45 × 3 by removing the padded 0’s. Each
value is then rounded to 0 or 1. In the grid of 60× 45 cells, all unused values of the binary vector, i.e., (1, 1, 1) and (0, 0, 0), are considered
as Background. A refinement step is then applied to this output layout to rectify element boundaries and address the slight misalignment
between elements.

To address the jagged edges of the elements, we first approximate the element boundaries with straight lines as follows. We first approximate
an element using its bounding box, if its area is less than as = 8 and the ratio of its area to the area of its bounding box is larger than
e = 95%. Then, for each of the remaining elements, we detect the weak connections where the number of consecutive 1’s are less than 4 in
the horizontal and vertical directions, and replace them with 0’s to form a new mask. A set of new elements, referred to as large elements, are
extracted from this new mask. We then approximate the boundaries of all the large elements using the same boundary approximation method
introduced in Section 1.1.2, except that we set the clustering threshold to 2 and limit the maximum number of clusters to 3.

To handle misalignment between elements, we first align the adjacent elements of the same type. To do this, we start by clustering the
elements of the same type into one group if they are roughly aligned in the vertical or horizontal direction (i.e., the difference between their
vertical or horizontal coordinates is smaller than 2 cells) and close to each other (i.e., their closest distance is smaller than 3 cells). We then
construct a bounding box of size h × w for the group, and project the elements in the group onto the vertical and horizontal boundaries of
the bounding box resulting in two binary vectors u ∈ Rh and v ∈ Rw, respectively. An entry of u or v is set to 1 if the number of the
element cells projected on it is larger than h/2 or w/2, and 0 otherwise. We reconstruct the layout of the elements in the group by taking
the outer product of u and v. We further bring all the elements with slight misalignment into top/bottom/left/right alignment. To perform a
top-alignment, we first cluster elements into one group if the top boundary coordinates of their bounding boxes differ no more than 2 cells.
For the elements from the same group, we then adjust their top boundaries to align with the lowest top boundary to create sufficient spacing
between elements. Likewise, we perform bottom, left and right alignments in a similar way.

Figure 7 shows some example outputs of the generator along with the refined outputs.

2.4 Hidden Unit Visualization of the Layout Encoder
We look into the hidden unit of the layout encoder in our model to probe what layout-related semantics that the representation has learned.
We follow [Wu et al. 2016] to visualize the graphic design images and the parts of them that maximally activate specific hidden units in the
fourth convolutional layer of the layout encoder. We choose this layer since it is the highest layer before fusing with multi-modal features
and is thus supposed to capture content-agnostic layout semantics. Figure 8 shows the results. We can see that some hidden units prefer
certain types of semantic elements on graphic design layout, e.g., the Headline-over-image elements at the first row, while some hidden units
emerge to detect alignment between elements, as shown in the second row. These results demonstrate that our representation has learned
some high-level concepts regarding graphic design layout.
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Figure 7: Refinement of the generator outputs. Top: outputs from the generator. Bottom: the refined outputs.

Figure 8: Hidden unit visualization. In each row, we show four designs and the parts of them that maximally activate a specific hidden unit
in the fourth convolutional layer of the layout encoder. Warmer colors represent higher activations.



3 Results and Evaluation
3.1 Details of Filling Image Elements in the Generated Layouts
To fill an image element with an input image, a focal point (i.e., the center of the most salient region) is detected using the algorithm in
thumbor [Heynemann et al. 2015] (a smart imaging service). We use this focal point to guide the cropping of the image so that the image is
not distorted and the important image content is preserved as much as possible. In particular, if the aspect ratio of an image element is larger
than that of the image, we scale the image to have the same width as the image element while keeping its aspect ratio, and align the centers
of both. Since the scaled image has a larger height than that of the image element, we align them along the vertical direction by the center,
top boundary or bottom boundary. To accomplish this, we equally divide the image into 3 vertical parts, i.e., top, middle and bottom. We
align the centers of the image and its image element if the focal point falls into the middle part of the image. In case if the focal point falls
into the top (or bottom) part, we align the top (or bottom) boundaries of both. Finally, we crop the image by preserving the part within the
image element. If the aspect ratio of an image element is smaller than that of the image, we scale the image to have the same height as the
image element while keeping its aspect ratio, and align the centers of both. We then determine, in the horizontal direction, how to align the
centers/left boundaries/right boundaries of the input image and its image element in a similar way.

3.2 Automatic Layout Generation
Figure 9 shows all the results used in the user study in Section 6.2 of the main paper.

3.3 Constrained Layout Generation
Figure 10 shows the remaining results used in the user study in Section 6.3 of the main paper.

3.4 Feature Learning
Figure 11 shows more retrieval results with VGG-based features (VGG), design features from [Bylinskii et al. 2017] and [Zhao et al. 2018],
and our learned features (Ours).
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Figure 9: Automatic layout generation results used in the user study. In each case, the input images, keywords and design category are shown
on the left. The layouts by the two baseline methods (Baseline1 and Baseline2), the top 1 layout by our method (Ours), and the ground truth
layout (Ground Truth) are shown on the right. For each layout, the Headline element is filled with a sequence of A’s in bold. Note that in
each case, the text and image proportions used in both the baselines and our method are obtained from the ground truth layout.
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Figure 10: Constrained layout generation results used in the user study. In each case, on the left are the input contents and the input sketch
indicating the approximate positions and sizes of the preferred elements in the output layouts (“T”: Text element, “I”: Image element,
“H”: Headline element, “(T /I)”: Text-over-image element, “(H/I)”: Headline-over-image element). Results by the baseline (Baseline),
our method (Ours), and the ground truth (Ground Truth) are shown on the right, where additional image elements that are not specified by
the input sketch are marked with a cross, and the Headline is filled with a sequence of A’s in bold. Note that in each case, the text and image
proportions used in both the baselines and our method are obtained from the ground truth layout.
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Figure 11: Layout-aware design retrieval results. For each query design, a ranked list of similar designs in terms of both layout and content
are retrieved using VGG-based features (VGG), design features from [Bylinskii et al. 2017] and [Zhao et al. 2018], and our learned features
(Ours).


