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Fig. 1. Our probabilistic generative model can support content-aware layout generation. Given input images, design category, and keywords that summarize
the text contents (which are either automatically extracted from the input text or directly provided by the user), as shown in (a), our method automatically
generates multiple layouts that fit the visual and textual contents (b). The user may optionally express his/her design intent by roughly sketching some
elements on a page, e.g., adding two image elements by sketching two green regions I1 and I2 and a headline element by sketching a red region H , as shown
in the small diagram in (c). Our method will then generate a layout that matches the user’s intent, i.e., two images and a header placed at the specified
locations, as shown in the large diagram in (c). The input images are from Pexels.

Layout is fundamental to graphic designs. For visual attractiveness and
efficient communication of messages and ideas, graphic design layouts often
have great variation, driven by the contents to be presented. In this paper,
we study the problem of content-aware graphic design layout generation.
We propose a deep generative model for graphic design layouts that is able
to synthesize layout designs based on the visual and textual semantics of
user inputs. Unlike previous approaches that are oblivious to the input
contents and rely on heuristic criteria, our model captures the effect of
visual and textual contents on layouts, and implicitly learns complex layout
structure variations from data without the use of any heuristic rules. To
train our model, we build a large-scale magazine layout dataset with fine-
grained layout annotations and keyword labeling. Experimental results
show that our model can synthesize high-quality layouts based on the visual
semantics of input images and keyword-based summary of input text. We
also demonstrate that our model internally learns powerful features that
capture the subtle interaction between contents and layouts, which are useful
for layout-aware design retrieval.
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1 INTRODUCTION
Layout is at the core of graphic designs, includingmagazines, posters,
comics and webpages. A high-quality layout can benefit information
presentation, guide reader attention and enhance visual attractive-
ness [Stribley 2015; Ying 2014]. Graphic design layout problems are
receiving a growing interest in the graphics community in recent
years. Some prior works try to model graphic design layouts for
layout generation guided by style, perception and aesthetics [Cao
et al. 2012, 2014; O’Donovan et al. 2014; Pang et al. 2016].
In graphic designs, layouts are especially created to frame con-

tents (e.g., images and text) in order to present messages and ideas
quickly and clearly. Therefore, rich layout variations in graphic
designs are largely driven by the visual and textual contents to
be presented [Prust 2010]. In other words, generating an effective
graphic design layout requires understanding the visual content
of image elements and the meaning of text elements in the design,
which largely encode the topic (e.g., makeup or health), style (e.g.,
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Fig. 2. Influence of content on layout. All example pages shown here are
from the fashion category: (a) and (b) on interviews; (c) on brief biographies;
(d) on fashion trends. The pages are from ELLE (© Hearst Magazine Media).

dynamic or formal) and purpose (e.g., promoting a product or illus-
trating an idea) of the design. For example, although all four pages in
Figure 2 belong to the “fashion” category, they exhibit very different
layouts because of different contents. The contents of (a) and (b) are
both about interviews, and thus have layouts with a dominant image
element. In contrast, the content of (c) is about brief biographies
of multiple persons, resulting in a layout with multiple columns to
present information. The content of (d) is about brief introductions
to several fashion trends, and is arranged in a more irregular and
creative way than that of (c). Unfortunately, existing layout meth-
ods only focus on modeling layout generative rules under some
high-level semantic factors (e.g., perceptual importance of images
or attention transition between image and text elements). They do
not consider the effect of visual and textual contents upon layouts.

In this work, we take a step towards investigating how visual and
textual contents affect graphic design layouts and modeling graphic
design layouts conditioned on the contents to be presented.We focus
our study on one popular and important type of graphic design:
magazines. This is because magazines cover a variety of image and
text contents, such as biographies, fashion shows and recipes, which
exhibit a diverse range of layouts with rich and complex arrangement
of images and text for different purposes. In addition, magazines
(which organize images and text for information communication)
are sufficiently representative, in terms of layout, of most types of
graphic designs (e.g., posters, advertisements and webpages).
We propose a probabilistic generative framework for modeling

content-aware graphic design layouts. Our model learns a condi-
tional distribution of graphic design layouts on visual/textual con-
tents and high-level design attributes. To account for rich layout
variations in graphic designs, we take advantage of Generative
Adversarial Networks (GANs) to model the complex layout distri-
bution, and introduce a semantic embedding network to encode
multi-modal contents and the structural/categorical attributes of
designs. Our model implicitly learns layout structures and design
principles from data, without using any heuristics as in existing
works. Further, our model automatically extracts visual features
that capture the subtle interaction between contents and layouts.
To train our model, we have constructed a large-scale magazine

layout dataset consisting of fine-grained semantic layout annota-
tions and keyword-based summary of text contents. Our dataset
covers a wide range of magazine categories (including fashion, food,
news, science, travel and wedding) with rich layout variations.
We demonstrate that our model can naturally support content-

aware layout generation. Given input images, design category, and

keywords summarizing the text contents (which can be either au-
tomatically extracted from the full text or directly provided by the
user), our layout generation method can automatically generate
multiple plausible layouts for the user, as shown in Figure 1(b). The
user can further express his/her design intent by roughly sketching
some elements on a page. Our method can then generate a lay-
out that matches the user’s intent, as shown in Figure 1(c). With a
layout-aware design retrieval experiment, we further show that our
model can learn features that capture the subtle interaction between
contents and layouts.

In summary, this paper has the following main contributions:

• To the best of our knowledge, we make the first effort to
study the problem of graphic layout generation conditioned
on visual and textual semantics of user inputs. To this end,
we propose the first content-aware deep generative model for
graphic design layouts, which is able to synthesize diverse
graphic design layouts based on visual and textual features.

• We contribute a large-scale magazine layout dataset with rich
semantic annotations including categories, fine-grained se-
mantic layouts and keywords summarizing the text contents.

• We demonstrate how our model can be applied to automatic
and constrained layout synthesis based on visual and textual
contents to produce high-quality layout designs. We also
show that our model can internally learn visual features that
capture how contents and layouts interact in graphic designs,
which is useful for layout-aware graphic design retrieval.

2 RELATED WORKS
Graphic Design Layout. The importance of layout in graphic

designs has motivated a lot of research efforts on layout synthe-
sis. Early works on document layout are mainly based on tem-
plates [Damera-Venkata et al. 2011; Hurst et al. 2009; Jacobs et al.
2003; Schrier et al. 2008]. These templates are manually designed
according to some design principles. A layout can be produced
by selecting a template that best fits the given content. However,
such a predefined, limited set of templates cannot describe the rich
variation of graphic design layouts well. In addition, the design of
these templates usually requires a lot of professional knowledge
and manual efforts.
In recent years, we have witnessed a rising interest in graphic

design layout problems in the computer graphics community. For
example, Kumar et al. [2011] propose an example-based retargeting
algorithm to transfer the content of a webpage to the layout of
another. Cao et al. [2012] propose statistical style models for creating
stylistic comic layouts from input images and semantics. Cao et
al. [2014] further compose comic elements to direct reader attention
by inferring a probabilistic graphical model. O’Donovan et al. [2014;
2015] arrange the input contents of a single-page graphic design
by optimizing an energy function defined by some visual design
principles. Recently, Pang et al. [2016] propose user attentionmodels
for optimizing input web designs in order to guide user attention
along designer-specified input paths. Todi et al. [2016] study the
layout problem of general graphic designs, and propose a layout
optimizer to improve hand-drawn layouts based on some visual
design rules. Yang et al. [2016] propose a system to generate visually
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appealing visual-textual presentation layouts bymaking use of topic-
dependent layout templates created by domain experts.
All these existing methods do not consider the effect of input

visual and textual semantics upon layouts, and therefore produce
results that are not adapted to the contents to be laid out. Our model
explicitly accounts for the subtle impact of contents upon layouts,
which has not been explored before. In addition, while these works
produce layouts based on some design rules, our model can capture
the space of rich layout structures purely from data, without using
any hand-crafted rules.

Deep Generative Models. Deep generative models learn to under-
stand data through generation. Deep Belief Networks (DBNs) and
Deep Boltzmann Machines (DBMs) are a family of generative mod-
els that have been used to synthesize shapes [Eslami et al. 2014;
Hinton et al. 2006; Wu et al. 2015]. However, such generative models
have low convergence and high computational cost. Recently, vari-
ational autoencoders (VAEs) [Kingma and Welling 2014; Rezende
et al. 2014] and generative adversarial networks (GANs) [Goodfel-
low et al. 2014] have shown great promise for learning deep gen-
erative models. VAEs learn an approximate inference mechanism,
but the generated samples tend to be blurry. In contrast, GANs
have achieved impressive results in image synthesis [Isola et al.
2017; Radford et al. 2015; Zhu et al. 2016]. However, standard GANs
lack an inference mechanism, which helps reason about the latent
features of data. Some techniques have been proposed to integrate
inference in GANs [Brock et al. 2017; Donahue et al. 2017; Dumoulin
et al. 2017] and applied to encode/synthesize 3D shapes [Li et al.
2017]. While previous works focus on modeling 2D images and
3D shapes, we take advantage of the GAN framework to learn the
distribution of graphic design layouts, and introduce a semantic em-
bedding network to model multi-modal contents. Concurrent with
our work, LayoutGAN [Li et al. 2019] uses a GAN-based framework
to refine the layout of randomly placed 2D graphic elements into a
good quality one. While similar in using GANs, their approach is
content-agnostic and thus cannot be easily adapted to address our
content-aware layout generation problem.

3 DATASET
Training our model requires a large and diverse graphic design
dataset with ground-truth layout annotations. Although there are
some publicly available datasets onmagazines and technical journals
with semantic segmentation [Antonacopoulos et al. 2009; Todoran
et al. 2005], they contain only a few hundreds of pages, with very
limited types of layouts. However, our goal is to characterize the
rich layout variation, which requires a larger number of pages with
diverse layouts. In addition, these existing datasets contain only
page segmentation, without any representation for text contents,
which is required to model layouts conditioned on text contents.

To this end, we have collected a corpus of 3,919 magazine pages
from the Internet, covering 6 common categories, including fash-
ion, food, news, science, travel and wedding. To the best of our
knowledge, our dataset is an order of magnitude larger than any
similar publicly available datasets. The numbers of pages for the
6 categories are 685, 753, 618, 509, 721, and 633, respectively. As

these 6 categories of magazine pages cover a large variety of con-
tents, they exhibit a rich layout variation. We annotate each page
with 6 different semantic elements, including Text, Image, Headline,
Text-over-image, Headline-over-image and Background. In addition,
we also extract keywords from the text contents of each page to
represent the text. Refer to Section 1.3 of the supplemental for the
statistics and examples of our dataset.

3.1 Semantic Layout Annotation
In this work, we assume that a layout comprises 4 types (i.e., la-
bels) of semantic elements: Headline, Text, Image and Background.
We distinguish Headline elements from other Text elements since
Headline elements play an important role on graphic design lay-
out [Smith 2014]. We have two considerations for selecting these
4 types of semantic elements. First, they are common elements in
graphic designs, and are also found to be the most frequently occur-
ring ones in our collected dataset and can therefore describe layout
variability of the dataset well. Second, other element types tend to
come along with one of these 4 element types (e.g., subheads are
always placed before body text and introductory paragraphs are
always placed after headlines), are always placed at regular location
(e.g., author credits), or are less common (e.g., pull quote). Without
loss of generality, we regard the other element types as text elements
in this paper. Further, to model layered representation in layouts, we
introduce two other labels to represent two popular types of layer-
ing: Text-over-image and Headline-over-image, which represent the
Text or Headline elements that entirely/partially overlap an Image
element. For each page, we assign each pixel to one of T = 6 la-
bels (Text, Image, Headline, Text-over-image, Headline-over-image,
Background) to represent its layout.
Since manually labeling so many pages from scratch would be

very time- and labor-consuming, we propose a semi-automatic
mechanism to label our dataset. We first manually label a small
subset of the pages and then use them to train a network to auto-
matically segment the other pages in the dataset, assigning each
pixel to one of the 6 labels. Motivated by the outstanding perfor-
mance of fully convolutional neural networks (FCNs) for semantic
segmentation [Long et al. 2015], we exploit the FCN for labeling
our pages. After the FCN segmentation, each segmented result is
improved via an automatic refinement step to remove noise and
refine element boundaries. To ensure the quality of the annotations,
we further manually rectify all the segmentations after the auto-
matic refinement. With the manually refined segmentation as the
ground truth, the pixelwise accuracy and region intersection over
union (IoU) [Long et al. 2015] of the FCN segmentation over the
whole dataset are 87% and 69%, respectively. After the automatic
refinement, both metrics increase to 88% and 76%, respectively. Refer
to Section 1.1 of the supplemental for more details.

3.2 Keywords Extraction
To model visual and textual contents in graphic designs, we need
to extract both images and text from the designs. Images can be
extracted directly from the segmentation. For text, since the full text
in a magazine page may contain a lot of redundant information that
are irrelevant to layout modeling, we propose to extract keywords
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Fig. 3. The framework of our model. It has two main parts: a multi-modal embedding network and a layout generative network. The multi-modal embedding
network learns the multi-modal features y from three inputs: visual contents (images), textual contents (keywords) and 3 high-level design attributes (design
category, text proportion Tp , and image proportion Ip ). These inputs are first sent to 3 independent encoders, i.e., image encoder, text encoder and attribute
encoder, respectively, and then merged via a fusion module to obtain y. The layout generative network learns a distribution of layouts conditioned on y and
extracts content-aware features ẑ. In particular, a layout encoder E maps a layout sample x to features ẑ conditioned on y, a layout generator G maps a
random vector z to a layout sample x̃ conditioned on y, and a discriminator D learns to distinguish joint pairs (x, ẑ) and (x̃, z) conditioned on y. The input
image is from Australian Geographic (© Barry Skipsey/Australian Geographic).

to compactly summarize and represent the full text. To this end, we
use an OCR tool from the Google Cloud Platform to recognize the
text on a page and then extract keywords using Rapid Automatic
Keyword Extraction (RAKE) [Berry and Kogan 2010].

For each magazine category, we create a keyword list to represent
the text of the category. This keyword list can then be used to help
select relevant keywords from the input text. For example, words
like “recipe” and “taste” are considered as meaningful keywords for
a “food” magazine page, while words like “style” and “dress” are for
a “fashion” page. To construct the keyword list for a category, we
first use RAKE to extract the keywords from all pages of the same
category in the dataset, and sort them according to their frequencies
of occurrences. We then manually filter them to 100 words as the
keyword list, by removing irrelevant or meaningless words to the
design category. We show the top 10 keywords in each of the 6
category-specific keyword lists in Section 1.2 of the supplemental.
In runtime, given an input page, we again extract the keywords

from the text content using RAKE and then remove those that are
not in the corresponding keyword list. The resulting keywords are
used to represent the text content.

3.3 Representing Layouts
Instead of using a parameterized layout representation (i.e., bound-
ing boxes) as in previous works, we choose to use an image-based
representation for layouts. In particular, we downsample each pix-
elwise layout segmentation to a compact image of size H ×W , by
dividing the segmentation into a H ×W grid of cells and assign-
ing each cell with the label that the majority of pixels in the cell
take. Note that such image-based representation is reminiscent of
the widely used grid system in the graphic design field, and can
be processed by CNNs naturally. We encode the value of each cell
in the layout with a 3-dimensional binary vector, using (0, 0, 1),

(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1) and (1, 1, 0), to represent the 6 la-
bels. The unused values of the binary vector, i.e., (0, 0, 0) and (1, 1, 1),
are considered as Background. An appropriate layout resolution is
important. A higher resolution allows the model to capture more
fine-level details of the layouts, but at a higher computational cost.
Here, we set the layout size to 60 × 45 to allow our model to cap-
ture sufficient details, while still being efficient to train. Our chosen
layout size can also help preserve the aspect ratio of 4/3, which is
commonly used in most magazine pages.

4 OUR MODEL
Since our end goal is to learn to generate high-quality graphic
design layouts by considering contents, we desire a model that
has a high learning capacity to represent complex layout structure
variations while capturing the dependency of layouts upon the
contents. To this end, we propose a content-aware deep generative
network architecture for layout generation. Since there may be
many plausible layouts given a particular set of contents, instead of
learning a deterministic mapping, our network learns a conditional
distribution of layouts given visual and textual contents as well
as the design attributes (i.e., design category, text proportion, and
image proportion). Finally, we can sample our network to synthesize
multiple different layouts according to the input contents.
Figure 3 shows our network architecture, which consists of two

main parts: a multi-modal embedding network and a layout genera-
tive network. The multi-modal embedding network learns the visual
features from images and textual features from text, and combines
them with the features learned from the three high-level design at-
tributes to form the multi-modal features for the layout generative
network. The layout generative network learns a layout distribution
to describe large layout variation and extracts high-level features
simultaneously, conditioned on the multi-modal features.
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4.1 Multi-modal Embedding Network
Our multi-modal embedding network learns visual and textual fea-
tures from image and text contents, and uses them to guide the
generative modeling process of graphic design layouts. We also
introduce three high-level design attributes to allow for a more fine-
grained control over layout generation. Our multi-modal embedding
network takes images, keywords and design attributes as inputs, and
uses image, text and attribute encoders to produce visual, textual
and attribute feature vectors, respectively. These feature vectors are
then merged through a fusion layer (including 2 fully connected
layers) to produce a 128-dimensional feature vector y to condition
the layout generative network.

Image encoder. Given a page, we extract all image regions ac-
cording to its segmentation labels. We then feed each image region
to a pre-trained VGG16 model [Simonyan and Zisserman 2015] to
extract image features. We use the 14 × 14 × 512 output of the last
convolutional layer as the image representation for each image ele-
ment. All image representations on a page are first summed up to
get a 14 × 14 × 512 representation. We apply spatial global average
pooling to form a 512-dimensional vector, which is then fed into 3
fully connected layers to produce a 128-dimensional image vector.

Text encoder. As stated in Section 3.2, given a page, we extract
a list of keywords to represent the text contents of the page. Each
keyword is projected to a 300-dimensional word embedding vector
using word2vec [Mikolov et al. 2013]. All word embedding vectors
for a page are summed up and then fed into 3 fully connected layers
to produce a 128-dimensional text vector.

Attribute encoder. We consider three design attributes: design
category, text proportion and image proportion. The design category
is important for layout modeling as it can influence the content as
well as how the content should be presented [Prust 2010; Saleem
2015]. Text and image proportions refer to the total area occupancies
by text (including Text-over-image) and image elements over a
page. They serve as high-level control signals to allow designers to
optionally and intuitively express their preference on the overall
density of text or images in the final layout, and are considered as
soft control for our layout modeling.

We describe the category attribute using an integer ranging from
0 to 5 to represent the 6 different categories in our dataset. We
empirically find that for over 98% of layouts in our dataset, the text
proportion falls into [0, 0.7] since it is unusual for text to cover the
whole page without any empty space (Background). On the other
hand, the image proportion can range between 0 and 1. Hence, we
set the maximum values of text and image proportions to 0.7 and
1, and quantize the two proportions uniformly with an interval
of 0.1 to 7 scales (from 0.1 to 0.7) and 10 scales (from 0.1 to 1),
respectively, such that all three attributes can be encoded as one-hot
vectors. Each vector is then duplicated 10 times to increase their
significance [Wu et al. 2015], and fed into a fully connected layer
to output a 48-dimensional attribute vector. Finally, all the outputs
are fused through a fully connected layer to form a 32-dimensional
attribute vector. Refer to Section 2.2 of the supplemental for the
detailed architecture of the image encoder, text encoder, attribute
encoder and fusion layer.

4.2 Layout Generative Network
The layout generative network is built upon the GAN [Goodfellow
et al. 2014], which consists of a generator and a discriminator. The
generator learns to generate samples of the same distribution as the
training data, while the discriminator learns to determine whether a
given sample is real or generated. In our layout generative network,
the generator G maps a 128-dimensional latent vector z to a layout
G(z). The discriminator D outputs a confidence value to indicate
whether a layout x is real or generated.

The standard GAN generates a layout from a sampled latent
vector. However, it is desirable to infer this latent vector from an ob-
served layout, be it partial or complete, via a learned mapping. Such
mapping would allow us to incorporate user preference into the
layout generation process (Section 6.3) as well as learn layout-aware
features for a more meaningful design comparison (Section 6.5). To
this end, we add an additional encoder, E, so that E can induce a
distribution p(ẑ|x) to map a layout sample x from real layout dis-
tribution p(x) to the feature space. Concurrently, the generator,G,
induces a distribution q(x̃|z) to map samples from a prior distribu-
tion q(z) to the layout space. We use a standard normal distribution
as the prior distribution q(z). On the other hand, as in [Donahue
et al. 2017; Dumoulin et al. 2017], the discriminator D is trained
to discriminate jointly in the layout and feature spaces, i.e., to dis-
tinguish the joint pairs (x, ẑ = E(x)) and (x̃ = G(z), z), rather than
only in the layout space (x and x̃). In other words, our adversarial
objective becomes: the generator and encoder are jointly trained
to fool the discriminator by generating joint pairs either from the
generator (x̃ = G(z), z) or encoder (x, ẑ = E(x)) that are indistin-
guishable by the discriminator, while the discriminator learns to
distinguish between these two types of joint pairs. The goal be-
comes to match the two joint distributions p (x, ẑ) = p (ẑ|x)p (x)
and q (x̃, z) = q (x̃|z)q (z). The encoder processes a layout sample
through a series of convolutional layers to produce two vectors,
which represent the mean and standard deviation of a Gaussian
distribution. A sample is then drawn from the Gaussian distribu-
tion and used as the feature vector. A detailed description of the
generator, encoder and discriminator is given in Section 2.1 of the
supplemental. Note that our layouts are represented as binary vec-
tors. When used in our model, they are treated as real vectors with
values in [0, 1], as it is difficult for GANs to handle discrete inputs.

Conditional modeling. To model graphic design layouts condi-
tioned on image and text contents, we feed the 128-dimensional
multi-modal features y from the multi-modal embedding network
into the layout generative network as conditional information. It is
sent to the encoder, the generator and the discriminator, so that (1)
encoder E induces a distribution p(ẑ|x, y) to map a layout sample x
from real layout distribution p(x) to the feature space conditioned
on y, (2) generatorG induces a distribution q(x̃|z, y) to map samples
from a prior distribution q(z) to the layout space conditioned on
y, and (3) discriminator D learns to discriminate the input joint
pairs conditioned on y. We feed y to generator G by directly con-
catenating y and z as the input to G. To apply y to encoder E and
discriminator D, we first duplicate y along spatial dimensions to
form a 60 × 45 × 128 feature map. We then concatenate this feature

ACM Trans. Graph., Vol. 38, No. 4, Article 133. Publication date: July 2019.



133:6 • Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W.H. Lau

map with x or x̃ as the input to D and with the feature map of the
fourth layer of E. Refer to Section 2.1 of the supplemental for details.

4.3 Loss Function
We follow the least squares GAN (LSGAN) [Mao et al. 2017] to
formulate the loss LDGAN for discriminator D and the adversarial
loss LGGAN for generator G as:

LDGAN =
1
2 (D (x, E(x, y), y) − 1)2 + 1

2 (D (G(z, y), z, y))2 , (1)

LGGAN =
1
2 (D (G(z, y), z, y) − 1)2 . (2)

To further improve the learning, we follow the VAE [Kingma
and Welling 2014] to introduce two additional terms into our loss
function: the reconstruction loss Lr ec and the Kullback-Leibler (KL)
divergence loss LKL as:

Lr ec = ∥x −G (E (x, y) , y) ∥2, (3)
LKL = DKL (p (ẑ|x, y) ∥q (z)) , (4)

whereDKL is the KL divergence. The reconstruction loss encourages
cycle consistency for the encoder and generator (i.e., if a layout
x is transformed to a feature vector ẑ via the encoder and then
transformed back to a layout x̃ via the generator, x̃ should be similar
to x). The KL divergence loss forces the distribution of ẑ of the
encoder p (ẑ|x, y) to be close to the distribution of z of the generator
q (x̃|z, y) (i.e., standard normal distribution q (z)), so that the feature
vectors for both encoder and generator lie in approximately the same
space. We have empirically found that the two additional terms can
help improve the inference performance on the data distribution,
where we need to use the encoder and generator jointly (i.e., first
map the sketched layout x to ẑ via the encoder and then map ẑ
to the inferred x̃ via the generator, as in our content-aware layout
generation discussed in Section 5).

To encourage the generator to produce diverse layouts, we add a
variety loss Lvar iety as in [Gupta et al. 2018]:

Lvar iety = min
k∈1,2, · · · ,K




x −G(z(k), y)



2 , (5)

where k is a hyperparameter. Given the input multi-modal features
y, we generateK layouts by randomly samplingK vectors {z(k)}Kk=1
from the distribution of z, and choose the generated layout that has
the closest distance to the ground truth layout x . The loss enables
the generator to thoroughly explore the true data distribution and
encourages diversity of the generated samples.

Hence, the loss functions for the generator and encoder become:
LG = LGGAN + Lr ec + Lvar iety , (6)
LE = Lr ec + LKL . (7)

4.4 Training Details
The whole network is trained end-to-end. A layout is first converted
to a downsampled image-based representation (60 × 45 × 3), and
then transformed to 64 × 64 × 3 by padding with 0’s. Our model
is trained with the Adam optimizer [Kingma and Ba 2015] using
the recommended configuration from DCGAN [Radford et al. 2015],
i.e., β1 = 0.5, β2 = 0.999, ϵ = 10−8, a learning rate of 0.0002 and a
mini-batch size of 128. In each iteration, we perform three parameter

update steps to update: (1) the parameters of the discriminator using
Eq. 1, (2) the parameters of the generator using Eq. 6, and (3) the
parameters of the encoder using Eq. 7. Note that in each parameter
update step, we also update the parameters of the multi-modal
embedding network using the loss of the step. We have empirically
found that the discriminator learns faster than the generator, which
would inhibit the learning of the generator. To ensure sufficient
training of all modules, in each iteration, we train the generator and
encoder multiple times until the loss of the discriminator is larger
than a threshold (1 in our experiments).

4.5 Runtime Layout Generation
To generate a layout with our network, we first convert the output
of the generator to an initial layout (60×45×3) by simply removing
padded pixels, and quantizing each value to 0 or 1.
GANs are known to have difficulties in reconstructing fine vi-

sual details. Although this is not a problem for our work since we
aim to generate gross layout structures instead of photo-realistic
images, it may still cause some visual artifacts in the generated
layouts. To tackle this problem, as in [Kelly et al. 2018], we use a
post refinement step to refine element boundaries and correct slight
misalignments among the elements. In particular, we first extract
individual elements from the initial layout via connected compo-
nent labeling. To address jagged element boundaries, we apply a
series of morphological image processing operations to approximate
the element boundaries with straight lines. To address slight mis-
alignments among some elements, we perform top/bottom/left/right
alignment on them. To perform a top-alignment, we first cluster
elements into one group if the top boundary coordinates of their
bounding boxes differ by less than 2 cells. For the elements of the
same group, we then adjust their top boundaries to align with the
lowest top boundary to create sufficient spacing between the ele-
ments. Likewise, we perform bottom, left or right alignment in a
similar way. Refer to Section 2.3 of the supplemental for details.

5 CONTENT-AWARE LAYOUT GENERATION
Our problem setting for layout generation is as follows. The user first
provides the contents, i.e., images, keywords (or full text), and design
category. If the user provides full text, keywords are extracted from
it automatically as in Section 3.2. Our goal is to generate layouts
that fit the given contents and user constraints (if any).

5.1 Automatic Layout Generation
Given input visual and textual contents, we propose an algorithm
based on ourmodel to automatically synthesize a layout thatmatches
the inputs. Note that when multiple input images are provided by
the user, the correspondence between the input images and the
image elements in the generated layout is required in order to place
the input images in the layout properly. To this end, we assume that
the input images are provided in a ranking list based on their impor-
tance, with the first being the most important and the last being the
least. These input images are then automatically associated with
the image elements in the layout according to the size difference of
the image elements, by assigning more important input images to
much larger image elements. In particular, given the user specified
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design category, our method first samples 16 sets of text and image
proportion values from the empirical distributions of text and image
proportions from the same design category in our dataset. For each
set, we generate 32 layouts by sending 32 different random vectors
drawn from the prior distribution q(z) to the generator, resulting in
512 layouts in total. We then remove invalid layouts by applying the
filtering criteria below: (1) the number of image elements is not the
same as that of input images; (2) the aspect ratio of the image ele-
ment (width/height) differs too much from that of the corresponding
input image (larger than 1.3 or less than 0.7 in our implementation).
The user is also allowed to specify his/her preferred text and/or
image proportions in the generated layouts. If these proportions
are given, the 512 layouts are generated from 512 different random
vectors drawn from q(z).

For the remaining layouts, we diversify them using Maximal Mar-
ginal Relevance (MMR) criterion [Carbonell and Goldstein 1998].
Specifically, we use the discriminator output (classification probabil-
ity) as the quality score of the generated layouts, and use L2 distance
in a feature space (the mean vector from our encoder conditioned
on the multi-modal features extracted from the input contents) to
calculate the similarity score between layouts. The layout with the
highest quality score is ranked the first and added to a rank list
L. For each of the other layouts l , we calculate a ranking score:
rl = Ql − max e ∈L S(l, e), where Ql is the quality score of l and
S(l, e) is the similarity score between l and e . The layout with the
highest ranking score is added to the rank list one at a time. By iter-
atively adding layouts to L, all the layouts are ranked by balancing
between quality and similarity. Finally, we return the top 3 layouts
as our generated layouts, which are filled with the given images
and some random texts.

5.2 Adding User Constraints
The user can also exert control over the layout generation process
by roughly sketching some elements on a page to indicate the ap-
proximate positions and sizes of some elements. Our method will
then generate a layout that matches the user’s constraints, as shown
in Figure 1(c). Note that the sketched elements only reflect the user’s
design intent, and are therefore treated as soft constraints. The user
will also need to indicate the corresponding images for the sketched
image elements. Given the user constraints, our layout generation
follows the steps discussed in Section 5.1, with one main difference:
instead of using random vectors, we use the features extracted by
the encoder from the input sketch, referred to as constraint features,
to generate novel layouts.
Specifically, to obtain the constraint features, we first convert

the input rough sketch to a partial layout xs by representing each
sketched element with a bounding box. We then send xs to our
layout encoder to obtain the constraint features ẑs conditioned on
the input images, keywords and design category. ẑs capture the
layout structure of the rough sketch, and are fed into the layout
generator to generate novel, complete layouts x̃ that match the
sketched elements in terms of position and size.
To generate layouts, we constrain the sampled text and image

proportions to be no less than their counterparts in the input sketch.
We then obtain a total of 512 layouts and remove the layouts whose
number of image elements is less than that of the input images or

the difference in aspect ratio between an image element and its
input image is large (as in the filtering criteria in Section 5.1). In
addition, if the user provides some sketched Headline regions, we
will remove layouts whose number of Headline elements is less than
that of sketched Headline regions. When diversifying the layouts
with MMR, we consider both the output of the discriminator and
the similarity to the sketched layout to measure the quality of the
generated layouts. Let s be an input sketch. The quality score of a
generated layout l is computed as: α × S(l, s) +Ql , where Ql is the
output of the discriminator given l and the input contents, S(l, s) is
the layout similarity score between l and s as in Section 5.1. α is set
to 2 in our implementation. Finally, we return the top layout, which
is automatically filled with the given images and some random text.

6 RESULTS AND EVALUATION
To evaluate our content-aware layout generation method, we con-
sider two scenarios, automatic layout generation and constrained
layout generation. In this section, we first present our evaluation
results on automatic and constrained layout generation, and then
look into the effect of visual and textual contents on layout genera-
tion. Finally, we explore using content-aware features learned by
our model in a design retrieval task.

For evaluation, we have selected 60 magazine pages that are not
seen by our model to form a test dataset. These pages are from
the same 6 categories as in our dataset, showing various layout
structures. Each page contains semantic layout segmentation and
keywords, obtained using the methods discussed in Section 3.

6.1 Implementation Details
To visualize the generated layouts, the font size for both Text and
Text-over-image elements is fixed, while the font size for both Head-
line and Headline-over-image elements is set to at least 3 times
larger and varies according to the size of the corresponding regions.
For Text-over-image and Headline-over-image, the font color can
be white or black depending on the brightness of the corresponding
image region, and the background of the Text and Headline is set to
be transparent (or white) if it overlaps entirely (or partially) with the
image. To fill an image element in a layout with its corresponding
input image, we first detect a focal point (i.e., the center of the most
salient region) of the image using [Heynemann et al. 2015], and
then use it to guide the cropping of the image so that important
image contents, e.g., the face of the key foreground character, are
preserved as much as possible. Note that these operations are only
used to visualize the generated layouts. Our layout generation pro-
cess does not involve any heuristics rules. Refer to Section 3.1 in
the supplemental for more details.

6.2 Automatic Layout Generation
Baselines. Since no existing works address the problem of content-

aware graphic design layout generation, we compare our method
with two simple yet reasonable content-aware baselines that are
based on nearest neighbor search. Given the same inputs as in our
method, all the layouts that belong to the input design category
are first selected as layout candidates for retrieval, which are then

ACM Trans. Graph., Vol. 38, No. 4, Article 133. Publication date: July 2019.



133:8 • Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W.H. Lau

Image:
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Category:

life, problem, 
talk, lesson, 
job, air

Science

Image:

Keywords:

Category:

guest, bride, 
ceremony, 
venue, party, 
photo

Wedding

Image:

Keywords:

Category:

enjoy, beach, 
restaurant, 
island, guest, 
resort, nature

Travel

Inputs Baseline1 Baseline2 Ours Ground Truth

Fig. 4. Results of our automatic layout generation method. In each case, the input images, keywords and design category are shown on the left. The layouts by
two baseline methods (Baseline1, Baseline2), layout by our method (Ours), and the ground truth layout (Ground Truth) are shown on the right. For each layout,
the Headline is filled with a sequence of A’s in bold. The layout segmentation is shown at the bottom-right or top-left corner (yellow for Text, green for Image,
red for Headline, blue for Text-over-image, purple for Headline-over-image and gray for Background). Note that in each case, the text and image proportions
used in both the baselines and our method are obtained from the ground truth layout. The input images (from top to bottom) are from Australian Geographic
(© Barry Skipsey/Australian Geographic), Club Med (© Club Med), MICHELLE BELLER PHOTOGRAPHY (© MICHELLE BELLER PHOTOGRAPHY).

filtered by the number and aspect ratios of the input images. Fi-
nally, the two baselines compute a content embedding vector using
our multi-modal embedding network and return the layout of the
nearest neighbor in the content embedding space from the filtered
layout candidates. To compute the embedding vector, for the first
baseline (Baseline1), we use our image encoder with VGGweights to
obtain a 512-dimensional image vector, and use the sum of word2vec
embeddings to obtain a 300-dimensional keyword vector. We then
concatenate the image and keyword vectors with three duplicated
one-hot attribute vectors (i.e., category, text and image proportions)
to form a content embedding vector. For the second baseline (Base-
line2), we directly use our learned multi-modal embedding features
as the content embedding vector for retrieval. While Baseline1 uses

the content features pre-trained for other tasks to verify if a naive
use of existing features works, Baseline2 uses the content features
from our trained multi-modal embedding network to verify if a
multi-modal embedding network alone works. Note that the base-
line results are existing layouts created by professional designers,
and are thus supposed to well respect visual design guidelines.

Qualitative results. Figure 4 shows our results (Ours), compared
with the layouts by the two baseline methods (Baseline1 and Base-
line2) and the ground-truth layouts (Ground Truth). For our method,
we show the top 1 layout among the generated layouts. For fair com-
parison, we set the text and image proportions for the two baselines
and our method to be the same as those of the ground truth. The
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Image:

Keywords:

Category:

dish, salad, 
chef, calorie, 
meat, pizza

Food

Image:

Keywords:

Category:

bride, couple,  
ceremony, 
venue, dream,
event

Wedding

Image:

Keywords:

Category:

island, sea, 
coast, hotel, 
visitor

Travel

Image:

Keywords:

Category:

woman, lab, 
scientist, 
research

Science

Fig. 5. Diversity of our results. Given each set of inputs, our method automatically generates 3 different layouts. The input images are from Pixabay and Pexels.
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Fig. 6. Results of the user study comparing layouts generated by our method
to those from the two baselines and the ground truth. We show the eval-
uation results by novices (a) and experts (b). In each column, we compare
our results with those from Baseline1 (left), Baseline2 (middle), and Ground
Truth (right). The color bar shows the percentage of times that our results
are preferred over others. The number in the parenthesis denotes standard
deviation. Evaluators (both novices and experts) consistently prefer our
results over the baseline results, in terms of the 3 aspects (Chi-squared
test, p < 0.05). Our results are generally comparable to the ground truth
(Chi-squared test, p > 0.05), except for the fitness preference of novices
(Chi-squared test, p = 0.01).

text and image proportions of the ground truth are computed as in
Section 4.1. The layouts by all methods and the ground truth are
created by filling themwith random text and the input images. Since
our focus here is on evaluating the layouts, for the ground truth, we
do not use the original pages for comparison as they may contain
some font decorations, such as different font faces and colors, which
likely bias human perception of the entire designs.

From Figure 4, we can see that our method can generate visually
attractive layouts that better fit the input contents, as compared
with the two baselines. For example, the input contents of the first
row are about a science lesson. The layouts from the two baselines
either have too little space for image presentation, or place the title
in the middle of the page. In contrast, our layout is more similar to
the ground truth layout in terms of how to compose images and
text visually and functionally. In addition, our layouts consistently

exhibit a better balance between the roles of multiple images and
text. For example, the input contents of the third row are about a
wedding ceremony. Our layout has a clear arrangement of images
and text, so as to elaborate the details of the wedding. In contrast,
the layout from the first baseline inserts one image into the text
region, and the layout from the second baseline overlays too much
text on the larger image. Both layouts may cause confusion on how
to follow the contents on the page.

Figure 5 shows more results generated by our method. Given the
same set of inputs, our method is able to generate diverse layouts
that fit the inputs. For example, the inputs for the bottom-right
example are on traveling (related to visiting a place). Our method
can generate diverse layouts with a large image and some empty
space around the text, making readers focus on the image and feel
relaxed. Refer to Section 3.2 of the supplemental for more results.

User study. We further perform a user study on Amazon Mechan-
ical Turk (AMT) with 20 randomly selected pages from our test
dataset. For each page, we extract its images, keywords and design
category as inputs, and use its text and image proportions (calculated
as in Section 4.1) to generate 3 layouts, each from our method (the
top 1 layout), Baseline1 and Baseline2. Participants were recruited
to evaluate the quality of the generated layouts via pairwise com-
parisons. For each test page, we created 3 comparison pairs (Ours vs.
Baseline1, Ours vs. Baseline2, Ours vs. Ground Truth), resulting in
a total of 60 pairs for comparison. In each comparison, two layouts
were shown side by side in random order, and the corresponding
inputs were also displayed. The participants were asked to select
the one that they preferred, in terms of 3 aspects: fitness (how well
a layout fits its given inputs), visual appeal, and readability. Each
comparison was evaluated by 10 different workers. Each HIT con-
sisted of 30 comparisons from 10 different inputs. For each worker,
we duplicated 5 randomly selected comparisons for consistency
check. In addition, we also recruited another 3 experienced graphic
designers for the evaluation.
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[O’Donovan et al. 2014] Ours [O’Donovan et al. 2014] Ours

Fig. 7. Visual comparison of our method against a graphic design layout
method [O’Donovan et al. 2014]. In each row, the results by [O’Donovan
et al. 2014] and by our method from the same inputs are shown on the
left. The results after changing the input image (the first row) and text (the
second row) are shown on the right. The input image at the right of the first
row is from Pexels. The rest are from [O’Donovan et al. 2014].

Figure 6 shows the results. We can see that both novice (a) and
expert (b) evaluators largely prefer our results over the baseline ones
in all 3 aspects. The differences between our results and the ground
truth in all 3 aspects are not statistically significant, meaning that
our results are comparable to the ground truth. Refer to Section 3.2
of the supplemental for the layouts used in our user study.

Comparison to prior work. As discussed before, while there are
several existing layout methods for different types of graphic de-
signs, they are all oblivious to the input contents to be laid out and
are therefore not able to produce tailored results for the contents.
In addition, they assume that the input text is already segmented
into text elements. While this is appropriate for comics (i.e., speech
balloons) or posters (i.e., text blocks), this assumption may not be
reasonable for graphic designs where the text is provided in the form
of an article. Segmenting a full article into separate elements before
the layout process is not straightforward as it is more a part of the
layout process itself. Thus, a full comparison with these methods is
impossible. However, we have made an attempt to visually compare
our results with those from a state-of-the-art layout method for
single-page graphic design [O’Donovan et al. 2014], which is based
on optimizing some visual design principles, as shown in Figure 7.
As can be seen, although our model is not explicitly forced to learn
visual design guidelines, our results compare favorably with those
by [O’Donovan et al. 2014], in terms of following well-known rules
(e.g., alignment, visual balance and spacing). In addition, our method
can generate different layouts as the input images and text change,
while their method always produces the same layout, irrespective
of the input contents.

6.3 Constrained Layout Generation
Qualitative results. We compare our method with a retrieval-

based baseline. Given input contents c and an input sketch s , the
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Fig. 8. Constrained layout generation results. In each case, the input con-
tents and the input sketch that indicates the approximate positions and
sizes of the desired elements in the output layouts (“T ”: Text element, “I ”:
Image element, “H ”: Headline element, “T \I ”: Text-over-image element,
“H \I ”: Headline-over-image element) are shown on the left. Results by the
baseline (Baseline), our method (Ours), and the ground truth (Ground Truth)
are shown on the right, where the Headline is filled with a sequence of
A’s in bold. Note that, in each case, the text and image proportions used
in both our method and the baseline are obtained from the ground truth
layout. The input images (from top to bottom) are from MICHELLE BELLER
PHOTOGRAPHY (© MICHELLE BELLER PHOTOGRAPHY), Club Med (©
ClubMed), Australian Geographic (© Barry Skipsey/Australian Geographic).

baseline retrieves a layout from our training dataset based on con-
tent and layout similarity:

argmax
i

L(fc , fci )
M

+

[
H (Bs ⊙ gs ,Bs ⊙ gli ) + H (Bli ⊙ gs ,Bli ⊙ gli )

]
2N ,

(8)
where i indexes over all pages that belong to the input category
in our training dataset. li represents the layout of the i-th page.
fc is the content embedding vector of the input contents, which
is obtained using Baseline1 in Section 6.2. gli ∈ RH×W denotes a
layout image of the i-th page, where the 6 element types are encoded
as 6 different integers. L(·, ·) and H (·, ·) denote L2 and Hamming
distance, respectively.M denotes the numbers of elements in fc , and
N = H ×W . ⊙ is a point-wise multiplication. Bs is a binary map
where the pixels within the sketched elements are set to 1 and the
rest are set to 0. Bli is another binary map where all pixels of an
element are turned on if this element overlaps with any element
of the same type in the input sketch. Note that when computing
the layout image of the input sketch gs , we set the cells outside the
sketched elements to a value that does not belong to any of the 6
element labels. The two Hamming distances in Eq. 8 are to prevent
the elements in a retrieved layout from over- or under-covering
their corresponding elements in the sketched layout.
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Fig. 9. Results of the user study comparing user-constrained layouts gener-
ated by our method to those from the baseline and the ground truth. We
show the evaluation results by novices (a) and experts (b). In each column,
we compare our results with Baseline results (left), and with Ground Truth
(right). The color bar shows the percentage of times that our results are pre-
ferred over other results. The number in the parenthesis denotes standard
deviation. The evaluators (both novices and experts) consistently prefer
our results over the baseline results, in terms of the 4 aspects (Chi-squared
test, p < 0.001). Our results are generally comparable to the ground truth
(Chi-squared test, p > 0.05).

For evaluation, we randomly select 20 existing magazine pages
from our test dataset. For each page, we select a random subset of
image and text elements. Using their bounding boxes as a reference,
we ask a human subject to manually sketch them to simulate an
input sketch. We then generate layouts by feeding the simulated
input sketch together with the selected image/text elements to our
method and the baseline, and compare these results with the ground
truth (i.e., the original page). For fair comparison, in each test case,
the text and image proportions for our method and the baseline are
set identical to those of the ground truth. Note that both our method
and the baseline do not see the ground truth pages during training
and test time. Figure 8 shows some of the results. The simulated
input sketches are from elements of various labels and sizes. We
can observe that our method can generate layouts that better match
the input sketches and are more consistent with the ground truth
in terms of presenting visual and textual contents, compared with
those from the baseline. This is because our method can synthesize
novel and plausible layouts from the constraint features, which
capture the partial input sketches and the input contents. On the
other hand, the baseline directly retrieves existing layouts from the
dataset and fills them with the given images and some random texts.
This may not fit the input contents well. Refer to Section 3.3 of the
supplemental for more results.

User study. We perform another user study on AMT to evaluate
the generated layouts via pairwise comparisons, as in Section 6.2.We
use the same 20 pages as in the qualitative evaluation above. For each
test page, we created 2 comparison pairs (Ours vs. Baseline, Ours
vs. Ground Truth), resulting in a total of 40 pairs for comparison.
We recruited 15 participants (6 experienced graphic designers and 9
novices), each of whom was asked to complete the 40 comparisons,
plus 3 randomly selected, duplicate comparisons for consistency
check. For each comparison, two layouts were shown side-by-side
in random order, along with the inputs. The participants were asked

to select the one that they preferred, in terms of 4 aspects: constraint
matching (i.e., input sketch), fitness (how well a layout fits the given
inputs), visual appeal, and readability. Refer to Section 3.3 of the
supplemental for the layouts used in the user study.
Figure 9 shows the results. We can see that both novice (a) and

expert (b) evaluators largely prefer our results over the baseline
results in all 4 aspects, especially in terms of matching user con-
straints. The difference between our results and the ground truth is
not statistically significant, which implies that our results are per-
ceived to be of similar quality to the ground truth by both novices
and experienced designers. In addition, we also compute the IoU
(intersection over union) of Ours, Ground Truth and Baseline, with
respect to the input sketches, to quantitatively measure the fitness
between the user-drawn constraints and results. In particular, for
each output layout, we first compute an element IoU between each
sketched element and its corresponding element in the layout, and
then a layout IoU by averaging all the element IoU’s. Finally, an
average IoU is computed across all the layouts. The average IoU’s
are 92.8%, 72.1% and 51.2% for Ground Truth, Ours, and Baseline,
respectively. This also shows that our results better match the user
constraints than the baseline results. Note that the average IoU for
Ground Truth is not 100% as our manually drawn input sketches
may not exactly match their counterparts in the original pages.

6.4 Effect of Input Contents on Layouts
Qualitative results. To investigate the effect of input contents on

layout generation, we generate layouts by changing either the vi-
sual or the textual input. Figure 10 shows the results of two design
categories, wedding and travel. We can see that changing the visual
or textual content produces visually and functionally different lay-
outs. For example, in the first column of the wedding category, if
we change the image from a house to a couple, the result is changed
from a more text-heavy layout (first row) to a layout with a large
image and sparse text (second row), to give readers a stronger sense
of romance. In the first column of the travel category, if we change
the house image (first row) to an image of a sea scene (third row),
the generated layout reduces the amount of text significantly with
more white space around it. This gives readers more room to take a
visual break, thereby making them feel more relaxed. In addition,
in the last row of the travel category, if we change the text from
food-related description (first column) to an introduction of a place
(second column), the layout changes from a balanced image-text
configuration to a large image with few lines of text below it for
description. This would deliver a large impact to readers, giving
them a stunning first impression of the place. Further, if we change
the design category from wedding to travel, there is a large change
in the layout style, since travel magazines often have a more dy-
namic structure with sparse text and large images in order to create
a casual reading experience.

Quantitative results. To quantify the influence of input contents
on the generated layouts, we perform an experiment to measure
how much the layout changes as we vary the input contents. We
consider three input factors, image, keyword and category, individ-
ually. Given a target input factor, we use our model to generate 10
groups of layouts. In each group, a set of layouts are generated by
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Keywords:
house, beach, 
discover, island

Fig. 10. Effect of visual and textual contents on layouts. From left to right, the input keywords are changed while keeping the image fixed. From top to bottom,
the input keywords are the same while the images are changed. The input categories for the left three columns and the right three columns are wedding and
travel, respectively. Note that the generated Headlines are filled with A’s in bold, and all the examples are generated using the same random vector. The image
in the first row is from Pexels, and the rest are from Club Med (© Club Med).
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Fig. 11. Left: Quantitative results for measuring the impacts of three input
factors (image, keyword and category) upon the generated layouts. For each
input factor, we show the mean and standard deviation of layout distances
when varying the factor. All the distance means are significantly different
from zero (one sample t-test, p < 0.05). Right: Results of the user study
investigating if people can recognize the influence of input contents upon
the generated layouts. For each of the three input factors, participants
were shown the content of the factor, a fit layout generated from the same
content, and an unfit layout generated from a different, random content of
the same factor. We report the fraction of times that participants prefer the
fit layouts over the unfit layouts. The number in the parenthesis denotes
standard deviation. For all factors, the preferences are statistically significant
(Chi-square test, p < 0.05).

varying the target input factor while leaving the other input fac-
tors unchanged. We then measure the layout difference within each
group, by embedding each layout into a content-independent layout

feature space where we compute pairwise distances between the
layouts via L2 norm. We use the output of the fourth convolutional
layer of layout encoder E in Figure 3 (the last layer before fusing
with multi-modal content features y) as the layout features, which
capture high-level layout semantics (as demonstrated in Section 2.4
of the supplemental). Finally, we aggregate all the distances across
different groups, resulting in a set of layout distances. In particular,
for category, we use 6 different input categories, resulting in 150
unique layout distances. For image and keyword, we use 5 different
inputs, giving 100 unique layout distances each.
Figure 11(left) shows the mean and standard deviation of lay-

out distances for each factor. We note that the distance means are
significantly different from zero (one sample t-test, p < 0.05) for
all factors. This suggests that the impact of input contents on the
generated layouts is statistically significant. We also note that the
impacts of image and category are stronger than that of keyword.

User study. Finally, we conduct a user study to explore if the in-
fluence of input contents on the generated layouts are discernible
to people. Again, we consider the three input factors, image, key-
word and category, individually. Given a target input factor, we
show participants the content of the target factor (e.g., “fashion”
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Inputs Result

Image:

Keywords:

Category:

fresh, juice, 
fruit

Food

Inputs Result

Image:

Keywords:

Category:

summer, color, 
beauty, makeup, 
young, face 

Fashion

Fig. 12. Advertisements generated by our method. In each case, the input
images, keywords, and design category are shown on the left, and the result
is shown on the right. The input images are from Pexels.

for design category), alongside two layouts that are displayed side
by side in random order. The two layouts are generated from our
model by changing the target factor while keeping other factors
fixed: a fit layout by using the content of the target factor and an
unfit layout by using a different, randomly selected content of the
target factor. We then ask the participants which layout better fits
the content of the target factor. Our hypothesis here is that if people
prefer the fit layouts consistently, it indicates that they are able to
recognize the impact of the target input factor on layouts. For each
input factor, we collect the responses from 12 participants on 20
different comparisons. Figure 11(right) shows the results. We can
see that participants can distinguish between fit and unfit layouts
w.r.t. the input category (Chi-square test, p < 0.05). Despite a rela-
tively weaker effect of the input keyword on the generated layouts,
participants still prefer the layouts that conform to the input set of
keywords (Chi-square test, p = 0.039). This implies that keyword
and design category can impact the generated layouts in different
ways that are recognizable by people. The preference over the fit
layouts w.r.t. the input image is also significant (Chi-square test,
p < 0.05). These results suggest that people can perceive the influ-
ence of different input factors upon the generated layouts, and that
all the inputs of our model are crucial to generating diverse layouts
with human-distinguishable characteristics.

6.5 Feature Learning
By being trained to generate layouts, our model learns to map the
given layouts into probabilistic latent features conditioned on the
image and text contents of the layouts (i.e., p(ẑ|x, y)). We conjecture
that in order to succeed in the content-aware layout generation task,
the learned features should capture high-level knowledge of the sub-
tle interaction between content semantics (i.e., what to present) and
layout structures (i.e., how to present). We validate the effectiveness
of our learned features through a layout-aware design retrieval task,
which requires understanding layouts and contents jointly.

In the layout-aware design retrieval task, given a query design,
our goal is to find other designs that are similar both structurally
(layout) and semantically (content). The key to the success of this
task is to define a powerful feature representation that allows for
meaningful comparison between designs, in terms of both layout and
content. For this task, we use the 128-dimensional mean vector from
our encoder as our content-aware features, and perform retrieval
using L2 distance. We compare our features with three baselines.

For the first baseline, we flatten the 14 × 14 × 512 output of the last
convolutional layer from a VGG16 model pre-trained on Imagenet.
For the second baseline, we flatten the 64 × 4 × 3 output of the last
convolutional layer from the design feature network pre-trained on
graphic designs [Zhao et al. 2018]. For the third baseline, we flatten
the 4096× 10× 7 output of the last convolutional layer from the GDI
model (FCN-16s) trained on graphic designs [Bylinskii et al. 2017].
For all three baselines, instead of using the outputs of the last fully
connected layers, we use the intermediate convolutional features to
capture spatial information in the input designs, which is important
for layout comparison. We observe that our features can return the
results that are closer to the queries, in terms of both content and
layout, as compared with the three baselines. This suggests that our
model learns informative features that capture both contents and
layouts jointly and their interactions for forming coherent designs.
Refer to Section 2.4 of the supplemental for more details.

We also conduct an experiment to visualize the other hidden units
of our layout encoder to investigate what semantics that they have
learned. The results show that some of the hidden units capture
high-level layout-related concepts, e.g., semantic elements and their
alignment. Refer to Section 2.4 of the supplemental for more details.

6.6 Application to other Graphic Designs
Although our model is trained on magazine datasets, we argue that
our model is generic enough in modeling general graphic design
layouts. To demonstrate this, we directly apply our model, without
re-training, to synthesize advertisement layouts, as shown in Fig-
ure 12. For better visualization, wemanually select the font faces and
colors used in the results, and add a color pattern to the background
of the right example.

7 CONCLUSION AND DISCUSSION
In this paper, we have taken a step towards modeling graphic design
layouts conditioned on the image and text contents to be presented.
To this end, we have proposed a novel probabilistic generative frame-
work for content-aware layout generation, and constructed a large
and diverse magazine layout dataset with rich annotations, includ-
ing fine-grained semantic layout annotations and keywords for text
contents. We have demonstrated that our model naturally supports
content-aware layout generation, with or without user input con-
straints. We analyze how the changes in visual and textual contents
influence layout generation, and show that our model can learn the
features that capture the interaction between contents and layouts,
through a design retrieval task. Our dataset and code are available
at our website1.

We show a typical failure case of our method in Figure 13, where a
Text-over-image element is placed at improper locations, occluding
some important image regions. This may be because our model does
not capture the spatial relationship between image saliency and
Text-over-image elements well. One possible solution is to explicitly
consider image saliency in our model, which is left as a future work.
Our end goal is to build a fully automated system that is able

to translate high-level user inputs into professional graphic design
layouts. We believe that there is still a long way from fully achieving

1https://xtqiao.com/projects/content_aware_layout/
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Fig. 13. Typical failure cases of our method. Our layout generation method
may generate unsatisfying layouts where the Text-over-image elements
occlude semantically important parts of the input images. In these two
examples, the text is placed on the human faces. The input images are from
Pexels.

this objective, with a number of interesting questions to be answered
in the future.

Encoding the input image dimension. Our approach does not take
into account the input image dimension explicitly, and uses a post-
filtering step to find the layouts that fit the dimensions of the input
images. It would be interesting to condition our model directly
on the input image dimension, e.g., by introducing an additional
embedding branch to encode such information. This may speed up
our layout generation process. However, a post-filtering step may
still be needed, as there is no guarantee that the dimensions of the
image regions in a generated layout will exactly match the input
image dimensions due to the effects of other input factors.

Strong coupling between images and their layouts. Our network
models the dependencies between overall semantics of the visual
contents and the layout, but is unable to capture the exact cor-
respondence between individual images and their corresponding
configurations (e.g., size and location) in a layout. This is partly be-
cause we choose a symmetric function to pool all the image feature
vectors in order to get a fixed image representation. To alleviate
this limitation, we could provide a “shuffle” option for users to ex-
plore different ways of assigning input images to image regions
in a generated layout, as in Adobe Spark [Spark 2018]. To enforce
a stronger coupling between images and their layout properties,
instead of directly reconstructing a full layout from our content
representation, it would be interesting to explicitly map the feature
vector of each image to an image layout (a binary mask encoding its
spatial configuration in a layout) and compose all the image layouts
for full layout generation.

Enforcing visual design principles. Our approach is purely data-
driven and does not explicitly account for some visual design guide-
lines. We have shown that our current method can generate promis-
ing results. However, it may produce some layouts that do not
strictly follow some design rules (e.g., slight misalignment). Since
the visual design principles are widely known and studied, one
solution to address this problem is to incorporate some priors on
visual design principles into our network. Another solution is to use

a more sophisticated rule-based optimization to refine our network
output.

Multi-page layout. Our model only considers the layout of a
single-page graphic design. However, in a magazine, there is likely
a relationship among the layouts for a sequence of pages, either
to provide a consistent appearance or to create a varying reading
tempo through the entire magazine. To address this problem, we
may combine recurrent neural networks (RNNs) to our model to
deal with the temporal dependency of a layout sequence.

Human-machine co-creativity. While we have demonstrated that
our results are readily usable for automatic production, it would be
interesting to explore a collaborative scenario where both human
and machine creativities can be involved in the design process.
In particular, instead of using our outputs as end results, human
designers may use them as prototypes or a starting point, and tweak
them into more personalized layouts. We believe that such human-
machine co-creativity has potential to inspire new approaches and
expand the boundary of our imagination for graphic designs.
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