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Abstract

To enhance the processing of complex multi-modal docu-
ments (e.g. e-books, long web pages, etc.), it is an efficient
way for users to take digital screenshots of key parts and
reorganize them into a new collage E-Note. Existing meth-
ods for assisting collage layout design primarily employ a
semantic relevance-first strategy, with arranging related con-
tents together. Though capable, it can not ensure the visual
readability of screenshots and may conflict with human natu-
ral reading patterns. In this paper, we introduce CollageNoter
for real-time collage layout design that adapts to various
devices (e.g. laptop, tablet, phone, etc.), offering users vi-
sually and cognitively well-organized screenshot-based E-
Notes. Specifically, we construct a novel two-stage pipeline
for collage design, including 1) readability-first layout gener-
ation and 2) cognitive-driven layout adjustment. In addition,
to achieve real-time response and adaptive model training, we
propose a cascade transformer-based layout generator named
CollageFormer and a size-aware collage layout builder for au-
tomatic dataset construction. Extensive experimental results
have confirmed the effectiveness of our CollageNoter.

Introduction
Note-taking is vital for comprehending complex information
by aggregating multiple contents into an integrated view.
When users are dealing with multi-modal digital documents
(e.g. long web pages, e-books, etc.), note-taking benefits
them from quickly processing information to creating com-
prehensive study summarization (Qiao, Cao, and Lau 2022).
With the increasing of various E-Note tools such as No-
tability 1, Microsoft onenote 2, etc., it is convenient for
users to capture screenshots of crucial contents and then ar-
range them upon a new digital canvas for note-taking. Given
the collage layout is suitable for organizing rich informa-
tion (Dayama et al. 2020), existing tools provide basic col-
lage layout assistance like automatic grid line alignment,
size adjustment, etc. However, it is still time-consuming for
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Figure 1: Comparison of tradition collage layout genera-
tion method(a) with our novel CollageNoter(b). While tra-
dition methods tend to cause visual distortion due to their
relevance-first layout optimization strategy, CollageNoter
adopts a novel two-stage procedure including 1) data-driven
readability-first layout generation and 2) cognitive-driven
layout adjustment, which can produce visually appealing
and cognitively intuitive layouts in real-time.

users to make a well-organized layout for notes, as cognitive
coherence and readability concerns exert different influences
on the layout design. The former focuses on organizing im-
ages in a cognitive-aware manner that is easy for readers to
understand, which is related to the logical relations among
screenshots and humans’ reading habits on the collage lay-
out. The latter seeks to avoid visual distortion by optimiz-
ing the use of empty spaces, which may sometimes conflict
with the cognitive-aware manner. Therefore, it is crucial to
achieve a trade-off on these factors for high-quality collage
layout generation of screenshot-based E-Note-taking.

Studies in the field of natural image collage layout gener-
ation(Fan 2012; Liang et al. 2017) and graphic layout gen-
eration (Li et al. 2018; Jyothi et al. 2019) are highly rele-
vant to ours. As for the former, tree-based methods achieve
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Dataset Scale Canvas Empty↓ Over↓ Align↓
Magazine 4K+ (225, 300) 0.01-0.89 (M=0.249, SD=0.03) 0.00-0.20 (M=0.028, SD=0.01) 0.00-17.51(M=0.582, SD=2.63)

Rico 30K+ (440, 2392) 0.02-0.94 (M=0.419, SD=0.10) 0.00-0.97 (M=0.539, SD=0.22) 0.00-74.25(M=0.869, SD=18.4)
PublayNet 360K+ (791,613) 0.15-0.99 (M=0.458, SD=0.13) 0.00-0.17 (M=0.001, SD=1.38) 0.00-42.01(M=0.201, SD=1.46)

PKU 9K+ (750, 513) 0.03-0.96 (M=0.835, SD=0.03) 0.00-0.87 (M=0.080, SD=0.01) 0.00-49.01(M=1.394, SD=5.04)

CollageLayout 30K+ HD, UHD, UR 0 0 0

Table 1: Comparison of datasets for graphic layout generation, where lower Empty, Over, and Align indicate better canvas
utilization, lower overlap, and improved alignment, respectively. Existing datasets are designed for a single fix-sized canvas and
not suitable for training collage layout generator, while our CollageLayout is alignment, filling the canvas, and none-overlap,
which contains layouts of high-definition (HD), Ultra high-definition (UHD) and ultra-wide resolutions (UR).

the best performances (Gan et al. 2020; Pan et al. 2019; Yu
et al. 2022), which obtain the layout based on a two-step
procedure as shown in Fig. 1(a). Initially, a binary tree is
constructed for input images in a bottom-up manner by iter-
atively merging the two most semantically related nodes to
a new one, where the semantic feature for the new node is
the fusion of its children. Then, by predicting the placement
(e.g. vertical or horizontal) operation of its children for each
inner node, the collage layout can be determined, which is
optimized under the constraints of minimizing the deforma-
tion of images and blank spaces as much as possible. In the
latter field, advancements in deep learning have led to the
successful application of generative neural networks, partic-
ularly transformers (Gupta et al. 2021; Jiang et al. 2023),
in graphic layout generation, which determine the size and
position for each input design element upon a fixed-size can-
vas conditioned on their category labels, spatial relation con-
straints, etc. Therefore, deep neural networks have already
been applied to numerous graphic layout design scenarios.

Although existing works in these two fields have provided
valuable insights, each has its own limitations. First, the
widely adopted semantic relevance-first tree for collage lay-
out generation may cause unavoidable visual distortion and
cognitive gaps. As shown in Fig. 1(a), when two elements
with significantly different aspect ratios have to be placed
together (element-3 and element-4) due to their highest se-
mantic relevance, both vertical and horizontal arrangements
may cause deformation. In addition, as existing layout op-
timization ignores human reading habits like the preferred
reading trajectories illustrated with purple dotted arrows in
Fig. 1, viewers have to spend extra effort to discern the cor-
rect logical order of screenshots when they read the collage
design, thereby increasing the cognitive burden. Second, as
for deep-learning-based methods, existing open-source lay-
out datasets summarized in Table. 1 are not suitable for note-
taking and tail to handle diverse device sizes. What’s more,
since there exists a trade-off between readability and cog-
nitive coherence, it is challenging to solely depend on data-
driven methods to address E-note design.

In this paper, we propose the CollageNoter with the fol-
lowing improvements to solve the aforementioned issues.
First, we introduce a novel two-stage pipeline as shown in
Fig. 1(b), including 1) readability-first layout generation and
2) cognitive-driven layout adjustment. The first stage places
images into a collage layout while preserving their original

aspect ratio and size 3. The second stage refines the layout
based on two human-centric strategies including the tree-
based order adjustment strategy and the alignment-aware
grouping adjust strategy, which aim to align the logical or-
der of screenshots with human natural reading order of the
layout. Second, as optimization-based layout searching is
time-consuming due to the vast solution space for possi-
ble layouts, we introduce transformer neural networks for
readability-first layout generation. Specifically, as shown in
Fig. 1(b) on the left, when the input screenshots can not fully
cover the whole canvas, the layout generator should be able
to arrange the remaining black regions for each element (il-
lustrated with the blue dotted line filled areas) to form the
overall alignment collage layout. Therefore, we propose the
CollageFormer with a generative adversarial network, which
includes a cascade generator decoupled into position and
size prediction, and a discriminator to make generated lay-
outs more closely aligned with the real-world designs.

Our contributions are summarized as follows:

• We propose a novel two-stage procedure for screenshot
collage layout design, considering both readability and
cognitive coherence to ensure that generated layouts are
both visually appealing and cognitively accessible.

• To generate high-quality results and achieve real-time
response, we introduce a novel data-driven cascade
transformer-based generator with an additional discrimi-
nator into collage layout generation.

• To achieve adaptive E-note generation, we build a collage
layout dataset builder to construct training dataset for dif-
ferent device sizes, and a collage layout dataset including
layout instances of commonly used device sizes.

• Both qualitative and quantitative experiments validate the
effectiveness of our approach compared to several strong
baselines. Moreover, we conduct user studies to demon-
strate the advantages our methods provide to users.

Related Work
Optimization Based Collage Layout Generation Existing
image collage generation studies focus on the photo album
arrangement (Liang et al. 2017) to plan a group of photos

3Preserving aspect ratio ensures visual consistency. Maintain-
ing size prevents disrupting the original hierarchy of text in screen-
shots due to scaling, which is typically indicated by font size
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Figure 2: Illustration of the CollageFormer for readability-first layout generation, which includes a cascade generator decoupled
into position prediction and size prediction stages, a discriminator taking generated and real-world collage layouts as input, and
a supervised reconstruction loss measuring the accuracy of generated layouts compared to the corresponding ground truths.
Specifically, we construct a device-adaptive layout dataset builder to automatically provide training data for any devices.

on a fixed-size canvas, which can be mainly divided into
the following two categories. First, parametric-based meth-
ods (Wei, Matsushita, and Yang 2009) model the collage
generation task with manually defined objective functions
on a set of geometric variables of input images, which in-
clude position, size, orientation, etc. They depend on the
probabilistic graphical framework (Rother et al. 2006; Liu
et al. 2009) or the heuristic manner (Gan et al. 2020) to solve
the multi-objective problem and struggle to deal with mul-
tiple input images. Second, partition-based methods (Fan
2012; Geigel and Loui 2000; Yu et al. 2022) generate the
collage layout in a top-down manner, which first iteratively
divide the canvas into two parts with a vertical or horizontal
cut line until enough regions are obtained, and then put im-
ages into corresponding regions. However, though such top-
down manner can eliminate the overlap of images, regions
not generated according to the aspect ratio of input images
tend to arouse image distortions. Therefore, genetic algo-
rithm (Fan 2012), greedy strategy (Wu and Aizawa 2016),
back propagation (Pan et al. 2019; Yu et al. 2022), etc. are
introduced to enhance the layout generation, which refine
the partition process for better ratio preserving.

Deep-learning Based Layout Generation The successful
applications of deep generative models have greatly bene-
fited the graphic layout generation. As generative adversar-
ial networks (GANs) and variational auto-encoders (VAEs)
can learn effective features for generating layouts similar
to real-world data, early works (Li et al. 2018; Zhou et al.
2022) depend on them to build layout generators. Recently,
Gupta et al. (Gupta et al. 2021) utilize a classic Transformer
network to auto-regressively generate layouts, whose ex-
perimental results confirm that self-attention is able to ex-
tract features representing layout design context. Yang et

al. (Yang et al. 2021) build the LayoutTransformer to han-
dle scene graphs. Very recent methods focus on further im-
proving transformer-based networks. Kong et al. (Kong et al.
2022) introduce bi-directional transformers with a hierarchi-
cal sampling policy. Tang et al. (Tang et al. 2023) further
improve the layout generation quality with a graph Trans-
former generative adversarial network. Jiang et al. (Jiang
et al. 2023) propose a unified representation for diverse lay-
out generation tasks with constrained decoding.

Method
As shown in Fig. 1(b), our CollageNoter contains two mod-
ules. First, the readability-first layout generation is based on
our novel CollageFormer, which takes a sequence of screen-
shots as input and predicts a layout with only considering
the aspect ratio and size of each screenshot. Second, the
cognitive-driven layout adjustment refines the generated lay-
out to enhance cognitive coherence with the tree-based order
adjustment strategy and alignment-aware grouping adjust-
ment strategy. Details are as follows.

Readability-first Layout Generation
Overview of CollageFormer. As shown in Fig. 2, in light of
the great improvements made by transformer-based layout
generation methods, our CollageFormer contains three mod-
ules including a cascade transformer-based generator decou-
pled into position prediction and size prediction stages, a
discriminator taking generated and real-world collage lay-
outs into consideration, and a supervised reconstruction loss
measuring the accuracy of generated layouts compared to
the corresponding ground truth.
Problem Formulation. The input screenshots are denoted
as I = {I1, I2, ..., In}. For each screenshot Ii, corre-
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Figure 3: Illustration of Tree-based order adjustment strategy, which includes refactoring collage tree from the generated layout
and bottom-up-based tree adjustment. Purple dashed arrows indicate human-preferred reading trajectories following the ‘F-
pattern’ for informative collage designs, blue and orange circles denote the logical and cognitive-coherence order of screenshots,
respectively. Obviously, our Tree-based order adjustment strategy significantly reduces the cognitive distance ∆.

sponding original (ẇi, ḣi) for its width and height are au-
tomatically detected. The output layout is formulated as
{(xi, yi, wi, hi)}ni=1, where (xi, yi), wi, hi are the top-left
coordinates, width and height of each element. The devia-
tion from (ẇi, ḣi) to (wi, hi) accounts for additional black
spaces required in some regions to ensure overall alignment.
Model Details. The input word sequence is formulated as
X = {unk, unk, ẇ1, ḣ1, ...unk, unk, ẇn, ḣn}. As shown
in Fig. 2, we decompose the embedding of each word Xi

into three components covering intra-instance and inter-
instance information. First, the word embedding, noted as
Ew, captures semantic features of each word in the vector
space. Second, we define each [unk, unk,wi, hi] as a block
corresponding to the same instance Ii. The block-id em-
bedding, noted as Eb, identifies different blocks. Third, the
attribute-id embedding, noted as Ea, differentiates words
related to size or position attributes. The final input embed-
ding is formulated by Eq. 1, where

⊕
is the concatenation

operation. The CollageFormer first generates the position of
each instance through a transformer-based position predictor
as Eq. 2, where fe1 is a standard transformer encoder.

Ei=1∼4n = Ew

⊕
Eb

⊕
Ea (1)

Lposition = {(xi, yi, ẇi, ḣi)}ni=1 = fe1(Ei=1∼4n) (2)

Based on the predicted Lposition, the Ėi=1∼4n is updated
and the final size of each instance is generated according to
Eq. 3 by the transformer-based size predictor, where fe2 is
another standard transformer encoder.

Lfinal = {(xi, yi, wi, hi)}ni=1 = fe2(Ėi=1∼4n) (3)

As for loss functions, the widely used reconstruction
loss (Jiang et al. 2023; Kong et al. 2022) for measuring the
deviation between a generated layout and the corresponding
ground truth can not effectively address overlapping among
design elements. Given the combination of the reconstruc-
tion loss and adversarial objective benefits the model train-
ing (Isola et al. 2017), we introduce an additional discrim-
inator to our CollageFormer, which further constrains the
generator to create fake layouts that are sufficiently similar

to the ground high-quality layouts and deceives the discrim-
inator into recognizing them as true. The transformer-based
discriminator takes generated collage layout and real sam-
ples as input, with the same embedding function as the gen-
erator. The final loss is calculated by Eq. 4, where Lrecon is
the reconstruction loss, Ladv is the adversarial loss.

L = Lrecon + λLadv (4)

Cognitive-driven Layout Adjustment
Though there exists extensive research on collage layout
generation, the human-centric concern has not been taken
into consideration. Based on studies in the field of cog-
nitive science (Mikolov et al. 2013; Perls, Hefferline, and
Goodman 1951) explaining humans reading habits on col-
lage informative designs, we first introduce two concepts for
cognitive-coherence collage layout generation.

• Logic order of screenshots for users to consistently un-
derstand them, which is formulated as the chronological
order of screenshots in which they were captured by users
in this paper 4.

• Human-preferred reading order of regions within a col-
lage layout, which can be inferred by the structure of the
layout and human reading habits when they process in-
formative collage designs.

The cognitive-coherence layout should align the logi-
cal order of screenshots with the human reading order,
which can help users understand the information continu-
ously rather than in a disjointed manner. In other words, the
screenshots should be arranged in logical order along the
collage regions in human-preferred reading order.

Given the readability-first layout only considers the as-
pect ratio and size of each screenshot, our CollageNoter in-
troduces the following layout adjustment strategies to rear-
range the layout to a both visually and cognitively appealing
result (details are added in the supplementary).

Tree-based Order Adjustment Strategy. As illustrated
with purple dotted arrows in Fig.3, humans tend to read com-
plex information according to the F-pattern reading trajec-

4Other measurements could be easily integrated into our layout
adjuster
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Figure 4: Illustration of alignment-aware grouping adjust-
ment strategy, where refining the direction of the alignment
helps to distinguish different semantic groups. Aligning im-
age 5 to the right enhances the distinction between Group 1
(images 1,2, and 3) and Group 4 (images 4 and 5).

tories (Moen and Fee 2000; Mikolov et al. 2013), process-
ing the collage regions row by row from top-left to right-
down. Therefore, a cognitively coherent layout should bring
the logical order (illustrated with blue circles) of screenshots
close to the F-pattern reading order (illustrated with orange
circles). To measure the differences between the two orders,
as shown in Fig.3, we introduce a cognitive reading distance,
noted as ∆, which sums the absolute differences between the
numbers of the reading order and the logical order for each
element. As shown in Fig.3(a), the cognitive distance for the
readability-first layout is 12, requiring significant effort from
users to comprehend the overall design.

However, directly mapping screenshots to their corre-
sponding reading regions will cause visual distortion. There-
fore, a tree-based order adjustment strategy is proposed for
the collage layout to maintain the readability of each screen-
shot while narrowing the gap between reading order and
logic order. As illustrated in Fig. 3(b), a binary collage tree is
first refactored from the generated layout, where inner nodes
represent vertical or horizontal placements and leaf nodes
indicate corresponding screenshots. Then, we assign the
reading priority order to each node (illustrated with red cir-
cles), with smaller values indicating higher priority. For each
leaf node, the reading priority order equals the logic number
of the corresponding screenshot. For each inner node, the
reading priority order is the average of its children’s. Then,
the readability-first collage tree is refined layer by layer in a
bottom-up manner, iteratively ensuring that higher-priority
nodes become the left children, which arranges these nodes
further to the left and above in the collage layout, making
them more accessible to readers following the reading order.
Finally, as shown in Fig. 3(c), the F-pattern-driven layout
reduces the cognitive reading distance from 12 to 2.

Alignment-aware Grouping Adjustment Strategy. To
further reduce users’ effort in understanding screenshots,
we propose the alignment-aware grouping adjust strategy,
which is inspired by the gestalt cognitive principle (Perls,
Hefferline, and Goodman 1951; Mann 2020) that humans
tend to perceive adjacent elements as a whole. To further
measure the reading efforts that viewers need to afford, we
introduce the actuarial reading distance noted as ▽, which
indicates the total distances users need to go through to pro-

cess all screenshots in a logically correct manner. As shown
in Fig. 4(a), all screenshots are displayed with left align-
ment, where the F-patter reading order is aroused and users
read 1-2-4(wrong)-2-1-3(correct)-4-5 to cover all contents.
By changing the alignment direction of screenshots, the vi-
sual grouping will be aroused where humans tend to first no-
tice the adjacent elements, and thus F-patter reading trajec-
tories are changed. As shown in Fig. 4(b), changing screen-
shot 5 to be right-aligned could guide users to distinguish
two groups easily, which reduces the ▽ from 7 to 4.

Benchmark Construction
Many public datasets related to different graphic layout de-
sign tasks have been proposed including Magazine (Zheng
et al. 2019) for magazine, Rico (Deka et al. 2017) for user in-
terface, PubleyNet (Zhong, Tang, and Yepes 2019) for doc-
ument, and PKU (Zhou et al. 2022) for advertisements, etc.
However, existing datasets are not suitable for the collage
layout design. As illustrated in Table 1, it is evident that
magazines and advertisements suffer from excessive over-
lapping. Though the document layout is well-aligned, it is
constructed for only one type of canvas size.

To achieve adaptive model training and inference, we
propose a new collage layout dataset builder to automat-
ically construct datasets for any device. In addition, we
collect a dataset named CollageLayout, which includes
layouts for high-definition (HD, 1920x1080), Ultra high-
definition (UHD, 3840x2160) and ultra-wide resolutions
(UR, 2560x1080) screen sizes, which are commonly used
in daily life. Each collage layout is accompanied by the geo-
metric parameters for design elements, noted as their bound-
ing boxes bb = {[xi, yi, wi, hi]}, standing for top-left coor-
dinates, width and height. In addition, as shown in Table. 1,
collage layouts in our dataset strictly adhere to the require-
ments of no overlapping, proper alignment, and full canvas
utilization (detailed in supplementary).

Experiment
Evaluation Metrics
First, we employ the metrics including Miou, Over and
Align commonly used in the literature (Kong et al. 2022;
Jiang et al. 2023). Miou measures how well the generated
layout matches the corresponding ground truth. Over calcu-
lates the total overlapping area between any pair of bound-
ing boxes within a layout. Align evaluates the extent to
which elements in graphic design are aligned by their cen-
ter or edge. Second, since collage design focuses on making
full use of the canvas, we introduce the occupancy ratio to
gauge the proportion of canvas occupied by all elements by
Eq. 5, where ϕpolygon calculates the total area covered by
the bounding boxes, noted as {(xi, yi, wi, hi)}ni=1, counting
overlapping areas only once. Cw and Ch note the width and
height of the canvas. The Empty metric is 1−Occupy.

Occupy =
ϕpolygon(

∑n
i bbi)

Cw × Ch
(5)
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Method
HD UHD UR

Miou↑ Over↓ Align↓ Empty↓ Miou↑ Over↓ Align↓ Empty↓ Miou↑ Over↓ Align↓ Empty↓
Trans (Gupta et al. 2021) 0.633 0.015 0.041 0.064 0.541 0.043 0.051 0.073 0.603 0.025 0.059 0.066
BLT (Kong et al. 2022) 0.831 0.011 0.027 0.033 0.686 0.037 0.045 0.049 0.812 0.019 0.039 0.033
Former++ (Jiang et al. 2023) 0.797 0.015 0.033 0.049 0.645 0.039 0.049 0.064 0.751 0.026 0.037 0.042
Ours 0.873 0.007 0.015 0.026 0.723 0.031 0.036 0.041 0.849 0.012 0.023 0.029

Table 2: Quantitative evaluation of different layout generation methods on original inputs.

Figure 5: Qualitative comparison on layouts generated by data-driven baselines and our method, where the original input images
are illustrated on the ground truth layouts. It is obvious that layouts generated by ours are most closely to ground truth ones,
with the best alignment and most minimal overlapping compared to the baselines.

Method Canvas
Number of input images
3 5 7 9

Softcollage (128, 128) 61 123 301 488

Semi (4,4) 8 28 35 60

Ours (1920, 1080) < 2

Table 3: Comparison of running time (in seconds) on differ-
ent methods.

Implementation
Each transformer block has 4 layers with a hidden size of
512, 4-head attention, and feed-forward dim of 1028. The
CollageFormer is trained for 100 epochs. The Adam opti-
mizers are used, and the initial learning rate is 10−3 for both
generator and discriminator. All experiments are carried out
with Pytorch framework and NVIDIA 3080 Ti GPUs.

Comparison with Data-driven Methods
We compare our CollageFormer with the following meth-
ods. Trans (Gupta et al. 2021) depends on a transformer-
based encoder-decoder framework to predict layouts auto-
regressively. BLT (Kong et al. 2022) (BLT) is the first at-
tempt to depend on only a transformer encoder to predict
a layout for all elements in parallel. Former++ (Jiang et al.
2023) is the state-of-the-art method introducing special to-

kens into transformers for layout generation.
Table. 2 illustrates the metrics calculated on generated

layouts. It is obvious that our model outperforms the rest
methods overall metrics, where higher Miou and lower Over,
Align, and Empty indicate better performances. The great
improvements validate the effectiveness of our cascade pre-
dicting framework and the additional discriminator. To com-
pare the layout generation quality of ours and baseline meth-
ods, Fig. 5 displays generated layouts randomly sampled
from the model outputs, where the corresponding input
screenshots are illustrated in the ground truth layouts. Obvi-
ously, our layouts are the most similar to ground truth ones,
which are more alignment and tidy. Notably, our Collage-
Former can handle a larger number of input screenshots with
diverse aspect ratios and sizes.

Comparison with Optimization-based Methods
We compare our CollageNoter with the Softcollage (Yu et al.
2022) which depends on the gradient-based optimization to
search for a reasonable layout, and Semi-Automatic Layout
Adaptation(Semi) (Zeng et al. 2023) which depends on the
simulated annealing algorithm to search for solutions.

First, as shown in Table. 3, our data-driven method sig-
nificantly outperforms these optimization-based methods in
terms of running time. The inference time for our neural net-
work model is notably shorter, as it only involves the infer-
ence phase, whereas the optimization-based methods require
extensive time to search for a suitable layout solution.
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Figure 6: Qualitative comparison on layouts generated from
our method and optimization-based method.

Method
HD

Miou↑ Over↓ Align↓ Empty↓
Ours-cascade 0.847 0.009 0.019 0.027
Ours-dis 0.839 0.010 0.023 0.031
Ours(full) 0.873 0.007 0.015 0.026

Method
UHD

Miou↑ Over↓ Align↓ Empty↓
Ours-cascade 0.706 0.033 0.041 0.042
Ours-dis 0.689 0.035 0.049 0.046
Ours(full) 0.723 0.031 0.036 0.041

Table 4: Ablation study on CollageFormer.

Second, Fig. 6 illustrates the generated E-Notes using
both the relevance-first strategy and our method. It is evident
that the relevance-first approach leads to more visual distor-
tions due to its fixed relevance-driven constraints, while our
method effectively preserves the original forms of the im-
ages, maintaining visual consistency.

Ablation Study
As our method includes a cascade generator and an addi-
tional discriminator, we study the following ablations. Ours-
cascade indicates only one transformer-based layout genera-
tor with the additional discriminator. Ours-dis represents the
CollageFormer with only the reconstruction loss. As shown
in Table. 4, comparing Ours-cascade and Ours-dis, the latter
performs better, highlighting the importance of the cascade
framework in enhancing layout generation quality. In addi-
tion, both variations generate layouts better than baselines,
demonstrating the effectiveness of these components.

User Study
To assess the real-world usability of our CollageNoter com-
pared to baseline methods, we conduct two user studies with
inviting 12 participants aged from 20 to 45 (50% female) to
join our tests. First, we collect 6 groups of screenshots and
display the E-Notes generated by different methods to par-

Figure 7: Illustration of user study.

ticipants, respectively. Each participant is required to select
the most visually appealing one, which requires the least ef-
forts to read and understand. As shown in Fig. 7(a), 83.3%
participants preferred the layouts generated by our method.
Second, we collect 4 groups of input screenshots and dis-
play the generated results with an additional question for
each collage design, which is related to the last screenshot
in the logical order simulating the most challenging infor-
mation searching scenario. We record the time each partic-
ipant takes to answer the questions based on corresponding
generated E-Notes. As shown in Fig. 7(b), with more input
screenshots, the difficulty of finding the answer is also in-
creasing, where E-Notes designed by our CollageNoter ob-
viously help users find the answer more quickly.

Conclusion and Discussion
In this work, we focus on screenshot layout design for E-
Note-taking and propose a novel readability-then-cognitive
coherence strategy to ensure that the generated notes are
both visually and cognitively easy to understand. Consid-
ering that optimization-based methods are time-consuming,
we propose a novel data-driven generator named Collage-
Former responding to different inputs in real time, with a
novel cascade framework and an additional discriminator.
Specifically, we develop a dataset builder to provide train-
ing data for any devices, enabling adaptive model training.
Given users may struggle with extensive information, a po-
tential improvement for CollageNoter would be to partition
the numerous input screenshots into multiple sets, for creat-
ing an E-note document with several pages.
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