
HDLayout: Hierarchical and Directional Layout Planning for Arbitrary Shaped
Visual Text Generation

Tonghui Feng1, Chunsheng Yan2, Qianru Wang1, Jiangtao Cui1, Xiaotian Qiao1,2*

1 School of Computer Science and Technology, Xidian University, China
2 Guangzhou Institute of Technology, Xidian University, China

thfeng@stu.xidian.edu.cn, qiaoxiaotian@xidian.edu.cn

Abstract
Visual text generation, which aims to generate photo-realistic
images with coherent and well-formed scene text being ren-
dered, has attracted widespread attention. Although recent
works have achieved promising performance, the limited
flexibility and controllability hinder their practical applica-
tions. We observe that different from natural objects, visual
text in real scenes often has an arbitrarily shaped structure
with different granularities (i.e., character, word, or line).
In this paper, we consider the modality gap between im-
age and text, and propose a new separation and composi-
tion pipeline for flexible and controllable visual text gener-
ation from only text prompts. At the core of our framework is
a novel Hierarchical and Directional Layout representation,
i.e., HDLayout, which can model the sequential and multi-
granularity nature of the visual text. Under this formulation,
we are able to generate arbitrarily shaped visual text automat-
ically. Extensive experiments demonstrate that our method
outperforms several strong baselines in a variety of scenarios
both qualitatively and quantitatively, yielding state-of-the-art
performances on arbitrarily shaped visual text generation.

Introduction
Text descriptions, e.g., street and storefront signs, banners,
and book covers, exist widely in real-world scenarios and
act as an important information carrier in facilitating visual
communication. With the rapid development of generative
models, astounding advances have been achieved in gener-
ating photo-realistic and prompt-aligned scene images (AI
2024; OpenAI 2023; Zheng et al. 2023; Yang et al. 2022)
in terms of fidelity and diversity. Despite showcasing im-
pressive performance, existing generative models still face
a persistent challenge in generating clear and contextually
appropriate text on scene images, due to the huge modality
gap between abstract text and natural objects. Thus, how to
generate well-formed and readable visual text to improve the
scene image quality is still an open and crucial problem.

Until recently, several models have emerged to address
this problem by using the predefined text layout as an ad-
ditional input or distilling the text prompt to predict bound-
ing boxes automatically. GlyphDraw (Ma et al. 2023) en-
hances text generation capabilities through simple glyph

*Corresponding author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(c) Visual Text Images(a) Existing Layout (b) Our HDLayout

Figure 1: Differences between (a) standard textual layout
representation and (b) the proposed HDLayout represen-
tation. Existing works use rectangular bounding boxes to
represent either character or word level visual text, lacking
shape details and different granularities. In contrast, we pro-
pose HDLayout, a novel hierarchical and directional layout
representation that can model both geometric and sequential
information simultaneously, enabling flexible and control-
lable arbitrarily shaped visual text generation (c).

guidance to generate a single row or column of text. Glyph-
Control (Yang et al. 2024) exhibits robust text generation
capabilities via diverse user-defined layout shapes. TextDif-
fuser (Chen et al. 2024) leverages a transformer to achieve
multi-line text rendering, by predicting various word-level
layouts automatically.

Nevertheless, we have noticed several drawbacks that hin-
der these models from realizing their full potential. (1) Ad-
ditional input requirement. Most existing works require
users to provide manual layout guidance for visual text ren-
dering. Such a requirement prevents them from converting
user prompts to scene images automatically, seriously limit-
ing the flexibility of text styles. (2) Rectangular bounding
box representation. As shown in Fig. 1(a), existing works
follow the scene layout modeling pipeline, and use rectan-
gular bounding boxes to represent either character or word
level text. However, such a representation lacks geometric
details of the visual text, and is quite different from real
scene text.

From our study, we have investigated the distinctive char-
acteristics of visual text that set them apart from natural ob-
jects in a scene, and made the following observations. (1)
Arbitrarily shaped structure. Visual text in real scenes
often has various layout structures (e.g., horizontal, multi-
oriented, curved, etc.), consisting of a set of arbitrarily

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

2996

shaped text lines. Existing rectangular bounding box rep-
resentation cannot fully capture such a characteristic. (2)
Multi-granularity. Visual text often appears with the cor-
relation of intrinsic structural information across different
text granularities, e.g., character, word, or line in scene im-
ages. Manually defining the text positions and sizes at multi-
ple levels would be labor-consuming. It would be important
to learn to predict multi-granularity layout automatically for
fine-grained and controllable visual text generation.

Inspired by the above observations, in this paper, we make
the first attempt to address the visual text generation prob-
lem from a novel layout perspective. To this end, we repre-
sent the visual text structure as Hierarchical and Directional
Layout, i.e., HDLayout, a novel layout representation that
contains fine-grained geometric details of the textual region.
Based on the new layout representation, we introduce a flex-
ible and controllable framework for arbitrarily shaped visual
text generation. In particular, our framework contains three
main modules. First, we separate the input prompt into two
parts. One is the textual description of the image, and the
other is the keywords labeled by the quotation mark. We
adopt a pretrained Text-to-Image (T2I) module to generate
the visual content. Second, we propose an HDLayout gener-
ation module to automatically predict the fine-grained visual
text structures from both the keywords and the visual content
obtained in the first module. Third, we composite the visual
and textual information together to generate the visual text
image via the Visual Text Render module.

To evaluate the effectiveness of our model, we conduct
quantitative and qualitative experiments across various sce-
narios. To obtain the corresponding training dataset, we also
construct a new HDLayout3k dataset with diverse and ar-
bitrarily shaped text structures. Experimental results show
that our HDLayout can capture the unique characteristics of
textual content, significantly enhancing the fine-grained ren-
dering quality and controllability of visual text generation.

In summary, the main contributions of this work are:
• To the best of our knowledge, we make the first effort to

solve the arbitrarily shaped visual text generation prob-
lem from a novel layout perspective. A hierarchical and
directional layout (i.e., HDLayout) representation is pro-
posed to model the unique characteristics of visual text.

• We propose a new separation and composition frame-
work to generate the textual and visual information sepa-
rately, enabling flexible and controllable visual text gen-
eration from only text prompts.

• We construct a new HDLayout3k dataset with diverse
and arbitrarily shaped text. The extensive experiments
show that our method achieves state-of-the-art perfor-
mances in arbitrarily shaped visual text generation.

Related Work
Image Generation. Early works mainly explore vari-
ous generative adversarial networks or variational autoen-
coder designs. PLGAN (Wang et al. 2022a) is a GAN-
based image synthesis method that distinguishes between in-
stance and stuff. Recent works have made significant perfor-
mance improvements, due to the power of diffusion models.

DALL·E3 (OpenAI 2023) and FLUX.1 (Black-Forest-Labs
2024) have demonstrated improved high-resolution text-to-
image generation quality, displaying great coherence and
accuracy in generating scene text images. Imagen (Saharia
et al. 2022) takes advantage of the capabilities of large trans-
former language models T5 (Raffel et al. 2020) to compre-
hend text while relying on the robustness of diffusion mod-
els for generating high-fidelity images. However, all these
works focus on visual content generation. In contrast, our
work focuses on textual content generation, i.e., visual text
on scene images, which are very different from natural ob-
jects in visual, structural, and semantic characteristics.

Visual Text Generation. Early works (Yang, Huang, and
Lin 2020) mainly focus on scene text editing, where mod-
els learn to render a reference text style on a target image.
With the significant progress of diffusion models, several
deep models have emerged to address the visual text gener-
ation problem by using the predefined text layout as an ad-
ditional input or distilling the text prompt to predict bound-
ing boxes automatically. GlyphControl (Yang et al. 2024)
combines Stable Diffusion (Rombach et al. 2022) and Con-
trolNet (Zhang et al. 2023), enabling the model to produce
diverse glyph layouts under user-guided text layout inputs.
GlyphDraw (Ma et al. 2023) employs specific diffusion tem-
poral images to construct text layouts to guide the visual
text generation. However, GlyphDraw exhibits low quality
when dealing with multiple text characters when generating
diverse layouts. TextDiffuser (Chen et al. 2024) leverages
a transformer to predict bounding boxes for each character,
followed by diffusion-based image synthesis with the text
description and character layout. The constraints imposed by
character layout may have a negative impact on the quality
of generated image parts. All of the above methods use the
predefined text layout or distilling the text prompt to pre-
dict rectangular bounding boxes for visual text generation.
In contrast, we consider the modality gap between image
and text, and propose a separation and composition pipeline
with the novel HDLayout representation, enabling arbitrar-
ily shaped visual text generation from only text prompts.

Layout Generation. Our work is in line with a series of
works on layout generation. LayoutGAN (Li et al. 2020)
synthesizes layouts by modeling the geometric relationships
of 2D elements, using a differentiable wireframe rendering
layer and a CNN-based discriminator to optimize layouts in
image space. LayoutTransformer (Gupta et al. 2021) intro-
duced a self-attention-based framework for generating and
completing scene layouts across various domains by learn-
ing the contextual relationships between layout elements.
Wang et al. (Wang et al. 2022b) propose a content-aware lay-
out generation network that synthesizes aesthetic text logo
layouts by evaluating character placement trajectories and
rendered shapes using a dual-discriminator module. Concur-
rent with our work, SceneVTG (Zhu et al. 2024) also enables
arbitrarily shaped text generation with a multimodal large
language model. In contrast to existing works that use rect-
angular bounding boxes to represent elements in the layout,
we propose HDLayout to model the sequential and multi-
granularity nature of the visual text.

2997

A sandwich
shaped logo with
a sign that says

"CREPES"

Input Prompt

T2I Generation

HDLayout
Generation

Visual Text
Render

Square road signs
with "SOCIAL"
and "MEDIA"

Input Prompt

The supermarket
facade says

"TRADER JOE'S"

Input Prompt
Text character info.

Text line info.
Text bbox info.
Text mask info.

Input Glyph

T2I Generation Glyph Render T2I Generation

BBox
Prediction

A sandwich shaped
logo with a sign

CREPES

Square road signs
with <eos> [x150]
[y200][x350][y320]
[S][O][C][I][A][L]
<eos> ...

Figure 2: A brief comparison between existing pipelines (left & middle) and the proposed pipeline (right) for visual text
generation. Existing works can be grouped by using the predefined Glyph Render (left) or distilling the text prompt to predict
rectangular bounding boxes (middle), and then performing T2I generation. In contrast, our approach considers the modality gap
between image and text, and proposes a separation and composition pipeline with the novel HDLayout representation, enabling
arbitrarily shaped visual text generation from only text prompts.

Method
As depicted in Figure 2, the scene text rendering process
initiates with the input prompt text being passed through
the T2I Generation module, which meticulously generates
a background image devoid of any text elements. Once the
background image is created, it is then processed by the
HDLayout generation module, which constructs a hierarchi-
cal and directional layout to ensure the accurate placement
of characters. Following the integration of the rendered text
with the background, the combined output is refined through
the Visual Text Render module, which enhances the overall
clarity and sharpness of the text.

T2I Generation Module
In this module, the prompt text undergoes processing to gen-
erate a background image free of any text, preparing the can-
vas for character-level layout generation. The input prompt,
denoted as T , specifies the words intended for rendering in
the image, formatted as ”xxx”. For instance, A sandwich-
shaped logo with a sign that says ”CREPES”. To ensure that
the generated background image remains text-free, we adopt
two approaches: removing text-related content directly from
the prompt and applying PP-OCRv3 (Li et al. 2022) to detect
and regenerate the image containing text. Subsequently, a
pretrained Diffusion model is employed to generate a back-
ground image Ibg ∈ R3×H×W , where H × W denotes the
image dimensions and 3 represents the color channels.

HDLayout Generation Module
The HDLayout generation module utilizes the content-
aware properties of the background image to iteratively re-
fine and generate character-level Bézier curve layouts. This

process is illustrated in detail in Figure 3, which showcases
the comprehensive HDLayout generation module pipeline.

In particular, we first generate coarse region-level bound-
ing boxes, which are progressively refined into line-level
bounding boxes. We then employ Bézier curves to adjust
the text generation area, ultimately leading to the segmen-
tation of the Bézier-controlled regions based on the num-
ber of characters. By employing a hierarchical optimization
strategy, the model can ensure a contextually accurate and
appropriate character-level layout within the image. Figure 4
presents a series of HDLayout results that contain the region-
level, line-level, and character-level text structures.

Image Encoder. This module utilizes a conventional CNN
encoder as its backbone to process the input background im-
age Ibg , reducing its dimensions to He ×We. This results in
an encoded feature map f ∈ RC×He×We , where C = 2048
and He,We = 16, 16.

Attention Mechanism. The decoders across the region,
line, and character levels all share a unified architecture
based on the standard Transformer decoder. Each input se-
quence undergoes a series of transformations through multi-
ple layers of self-attention, cross-attention, and feed-forward
networks (FFNs), ultimately producing the feature vector
hs. A distinctive feature of our approach is the use of only
N = 2 decoder layers at each level.

Region Decoder. This module initiates by generating an
all-zero input sequence tr ∈ RMr×Er , where Mr denotes
the anticipated number of region-level bounding boxes.
Prior to feeding sequences into the region attention module,
the feature map f is first embedded via the region embed-
ding layer, resulting in zr:

2998

Region-level

Line-level

Character-level

LR

Backbone

Image
Feature

Self Attn.

Cross Attn.

FFN

Cross Attn.

FFN

Cross Attn.

FFN

Self Attn. Self Attn.

Region-level Line-level Character-level

qkv qkv qkv

qkv qkv qkv

MLP Linear MLP Linear MLP Linear

Multi-level Layouts

LL

LC

x N

Input Image
Loss

Figure 3: The overall pipeline of the HDLayout generation module. Given an input image and the keywords, we first extract
image features from a backbone network. We then progressively refine the HDLayout in a coarse-to-fine manner, including
region-level, line-level, and character-level. Note that we use rectangular bounding boxes to represent both the region-level and
line-level text structures, and use Bézier curves to represent the character-level varieties.

Figure 4: Results of the generated HDLayout representation.
Given the input image (top), our HDLayout generation mod-
ule is able to generate hierarchical and directional layout
structures (bottom) for the visual text. Bounding boxes with
blue and green colors represent the region-level and line-
level structure respectively, while irregular shapes with red
color represent the character-level structure.

zr = Regionemb(f), (1)

where zr ∈ REr×(HW), Er is the region embedding dimen-
sion, and HW = He × We = 256 , which is consistent
across all levels. After zr embedded in multi-cross-attention,
the input sequence vectors are processed to obtain the region
feature vector hsr:

hsr = Regiondec(tr, zr, pr), (2)

where hsr ∈ RN×Mr×Er , pr ∈ RMr×Er represents the
learnable positional encoding. The feature vector hsr is fur-
ther decoded by an MLP, producing the region bounding
boxes Boxr ∈ RN×Mr×4, with the four bounding box val-
ues corresponding to (x1, y1, x2, y2). Additionally, a fully
connected layer (FC) is applied to hsb to generate the confi-
dence scores Pr ∈ RN×Mr×1 for each bounding box.

Line Decoder. This module adopts the same input struc-
ture as the region decoder, generating the input tl ∈
RMl×El , where Ml represents the number of line bound-
ing boxes. The line embedding layer is integrated with the
region feature vector hsr to acquire zl:

zl = λ1BL(hsr) + Lineemb(f), (3)

where zl ∈ REl×HW , El represents the embedding dimen-
sion at the line-level, λ1 = 1.5 is a weighting coefficient,
and BL is the region output feature encoding function. Sim-
ilar to the region decoder, the line decoder processes the in-
put sequence to generate the line-level feature vector hsl,

hsl = Linedec(tl, zl, pl), (4)

where hsl ∈ RN×Ml×El , pl ∈ RMl×El signifies the learn-
able positional encoding. After hsl further passing through
an MLP and an FC, the model outputs the line-level bound-
ing boxes Boxl ∈ RN×Ml×4 and their corresponding confi-
dence scores Pl ∈ RN×Ml×1.

Character Decoder. This module’s input structure mir-
rors that of the region decoder, generating the input tc ∈
RMc×Ec , where Mc represents the expected number of

2999

Bézier curve. The character embedding layer is combined
with the line-level feature vector hsl to encode zc,

zc = λ2LB(hsl) + Charemb(f), (5)

where zc ∈ REc×HW , Ec represents the embedding dimen-
sion, λ2 = 3 is a coefficient, and LB is the line output fea-
ture encoding function. As in the line decoder, the character
decoder processes the input sequence to obtain the character-
level feature vector hsc,

hsc = Chardec(tc, zc, pc), (6)

where hsc ∈ RN×Mc×Ec and pc ∈ RMc×Ec repre-
sents the positional encoding. An MLP is used to pro-
duce the Bézier curves C ∈ RN×Mc×16, with the 16
Bézier curve values representing the 4 control points
(x1, y1, x2, y2, x3, y3, x4, y4)upper for the upper curve and
the 4 control points (x1, y1, x2, y2, x3, y3, x4, y4)lower for
the lower curve. Additionally, hsc is passed through an FC
layer to obtain the confidence score Pc ∈ RN×Mc×1.

Text Rendering Module
The primary task of this module is to leverage the generated
layout to correctly render the text specified in the prompt
at the designated positions on the background image. Ini-
tially, the Bézier curves, generated in earlier modules, are
segmented at the character-level according to the number of
characters specified in the prompt, ensuring that each char-
acter aligns with a distinct polygon layout. Subsequently,
using existing font libraries, the individual characters are se-
quentially embedded into their respective positions on the
background image Ibg , culminating in a pre-populated scene
text image Iwt, where Iwt ∈ R3×H×W . Finally, both Iwt

and Ibg , along with the entire prompt text, are processed
through the Diffusion model, producing the final scene text
image with the text accurately rendered.

Loss Function
We utilize the layout of bounding boxes within the same hi-
erarchical level to macroscopically constrain the layout of
Bézier curves, allowing the Bézier curves to be adjusted
and refined based on the bounding boxes. Additionally, in-
spired by the auxiliary decoding loss and matching loss in
DETR (Carion et al. 2020), we compute the loss for each
decoder layer’s output and calculate the matching loss be-
tween outputs and ground truth, using the Hungarian algo-
rithm for matching to obtain the final loss. Moreover, we
utilize a cross-entropy loss to predict the confidence of each
bounding box and Bézier curve.

Bounding Box Loss. To effectively perceive the image,
we calculate the L1 loss for the generated bounding boxes:

LL1 =
1

N

N∑
i=1

|B̂ −B|, (7)

where N denotes the matched number of bounding boxes,
B̂ and B represent the coordinates of the ith predicted and
ground truth bounding box seperately.

The GIoU loss is particularly effective for improving the
accuracy of bounding box localization, especially in cases
where the boundaries are close but not fully overlapping.
GIoU extends the standard IoU by incorporating the distance
between the predicted and ground truth bounding boxes,
leading to better convergence properties:

GIoU =
|B̂| ∩ |B|
|B̂| ∪ |B|

− |C| − (|B̂| ∪ |B|)
|C|

, (8)

LGIoU =
1

N

N∑
i=1

(1− GIoU(B̂, B)), (9)

where |C| denotes the area of the smallest enclosing box that
contains both B̂ and B.

To prevent the model from generating multiple bounding
boxes in the same location, we calculate the overlap loss
for all generated bounding boxes. By minimizing the over-
lap loss, the model generates bounding boxes with a well-
distributed spatial arrangement, improving the clarity and
readability of the text layout. The overlap loss ensures that
the generated bounding boxes maintain a reasonable layout
structure by avoiding mutual occlusion:

Lol =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

IoU(Bi, Bj), (10)

where M is the number of generated bounding boxes.
The total bounding box loss is calculated as follows:

Lbbox = costbbox = c1LL1 + c2LGIoU + c3Lol, (11)

where c1, c2, c3 are coefficients set to c1 = 5, c2 = 2, c3 = 1
, reflecting the relative importance of each loss component.
costbbox serves as the basis for the Hungarian algorithm in
matching bounding box pairs.

Bézier Loss. Currently, there is no ideal loss function
specifically designed for constraining Bézier curves, so we
use the simple approach by employing the L1 loss.

LBézier = costBézier = LL1, (12)

where c4 = 5 . The term costBézier represents the basis for
the Hungarian algorithm in matching Bézier curve pairs.

Confidence Loss. The confidence score is primarily used
to determine whether a bounding box or Bézier curve should
be selected from the generated candidates. We compute the
confidence loss using the standard cross-entropy loss:

Lconf = −p · log(q), (13)

where q represents the confidence score predicted by the
model and p = 1 is the ground truth label indicating the
presence of the object.

The combined loss function is given by:

L = λ1Lbbox + λ2LBézier + λ3Lconf, (14)

where λ1 = 1, λ2 = 5, and λ3 = 1.

3000

GlyphControl
Input Prompt

TextDiffuser

A circle logo
of a mermaid,
with the words

''GOOD''
and

''MORNING''

The curved
arch bridge
with words
''Rainbow''

A nice drawing
of meadow,

houses and sun
made by a child

with crayons
with words

''Beautiful Village''

Ours
Input Glyph Output Layout Output LayoutOutput Image Output Image Output Image

Figure 5: Qualitative comparison between the baselines and our model. Given the input prompt (1st column), we show the
generated visual text results from baselines (3rd and 5th columns) and our model (7th column). Note that GlyphControl (Yang
et al. 2024) needs an additional glyph image (2nd column) as input. We further show the layouts predicted by TextDiffuser (Chen
et al. 2024) (4th column) and our model (6th column).

Experiment
Dataset. We construct the HDLayout3k dataset for this
problem. It is derived from SCUT-EnxText (Liu et al. 2020)
by reorganizing all word-level polygon data. At the region-
level, bounding boxes are defined using the top, bottom, left,
and right edges of all polygon points. At the line-level, we
compute the minimum enclosing box for each polygon as the
bounding box. At the character-level, Bézier curves are fit-
ted to the segments of the polygon’s top (or left) and bottom
(or right) boundaries. The two sets of Bézier control points,
which respectively represent the two curve boundaries, al-
lowing for a smooth representation of the character-level
structure. The HDLayout3k dataset comprises 2,749 train-
ing data and 813 test data. To make fair comparisons, we
further utilize the Anytext-benchmark (Tuo et al. 2023) as
our image generation test dataset. This dataset contains 1000
images with scene text, along with corresponding prompt
descriptions, the text to be rendered, and their positions.

Implementation Details. During the training phase, we
conduct layout generation training for 600 epochs using the
HDLayout3k dataset on one RTX 4090. We use AdamW op-
timizer with a learning rate of 1e-4, a weight decay of 1e-4,
and a batch size of 2. The CNN encoder in our architecture
is based on a trainable ResNet50 with a learning rate of 1e-5
and the input image size is 512× 512.

Evaluation Metrics. We utilize FID (Heusel et al. 2017)
to calculate the similarity between generated and real im-
ages. FID extracts feature vectors from images and com-

putes the Fréchet distance between these feature distribu-
tions, with a lower FID indicating a higher resemblance be-
tween generated and real images. Furthermore, to demon-
strate the significant advantage of our model in layout gen-
eration, we adopt the Layout-FID metric, similar to the one
used in LayoutDETR (Yu et al. 2022), to evaluate the quality
of generated layouts. Like FID, Layout-FID aims to capture
the discrepancy between generated and real layouts to as-
sess the performance of the layout generation model. In this
evaluation, we compute Layout-FID using the generated and
the ground truth layout mask images, with FIDNetV3 (Inoue
et al. 2023) serving as the feature extractor.

Compared Methods. Our method begins by using an ad-
justed prompt to generate a background image without text
through a diffusion model. Subsequently, the HDLayout
generates a plausible text layout based on this background
image. Finally, the complete prompt, background image, and
text layout are processed together into the diffusion model
to produce the final scene text content. GlyphControl (Yang
et al. 2024) initially renders glyph images according to the
provided glyph instruction and combines them with prompt
features to control the diffusion model for generating scene
text images. TextDiffuser (Chen et al. 2024) employs a trans-
former to predict text layout from the prompt and utilizes
the Pillow to obtain character layout bounding boxes, which
are then input into the diffusion model to generate scene text
images. While GlyphControl (Yang et al. 2024) requires pre-
designed layouts, TextDiffuser (Chen et al. 2024) and our
method rely solely on the prompt.

3001

Methods
FID (↓)

Image FID Layout FID

SD-2.1 (Rombach et al. 2022) 92.462 -
SD-XL (Podell et al. 2023) 102.128 -

ControlNet (Zhang et al. 2023) 89.802 -
GlyphControl (Yang et al. 2024) 83.402 -
TextDiffuser (Chen et al. 2024) 82.068 27.135

Ours 78.027 12.343

Table 1: Quantitative comparison of the proposed method
with the baselines. We evaluate their performances using Im-
age FID and Layout FID scores. The best results are high-
lighted in bold.

Qualitative Evaluation
We perform an in-depth comparative analysis against lead-
ing state-of-the-art (SOTA) models in the text-to-image task.
As depicted in Figure 5, GlyphControl (Yang et al. 2024) re-
quires additional glyph inputs, which underscores the chal-
lenges faced by models that rely on rigid input structures.
Moreover, TextDiffuser (Chen et al. 2024), while more flexi-
ble in generating layouts based on prompts, is still restricted
to arranging characters in a linear fashion, thus failing to
support more complex text layouts such as curves or inclined
text. In contrast, our model stands out by leveraging only
standard prompts to autonomously generate a wide range of
text layouts, including curved and tilted configurations. This
flexibility allows our model to adapt the text placement in
harmony with the background image’s content, ensuring a
seamless integration of text within the visual context. The re-
sulting images not only adhere closely to the user’s prompt
but also exhibit a natural and aesthetically pleasing layout
that enhances the overall image composition, demonstrating
a clear advantage over existing SOTA approaches.

Quantitative Evaluation
We evaluate all methods using metrics on the Anytext-
benchmark (Tuo et al. 2023) dataset. To ensure fairness, all
compared scene rendering models are based on the SD-1.5
diffusion model, except for SD-2.1 (Rombach et al. 2022)
and SD-XL (Podell et al. 2023). All methods use official
weight files, with a fixed random seed of 100, a batch size of
4, 20 sampling steps, and identical prompts. The quantitative
results are presented in Table 1.

The results demonstrate that our model achieves SOTA
performance in image generation, surpassing SD-2.1 (Rom-
bach et al. 2022), SD-XL (Podell et al. 2023), Control-
Net (Zhang et al. 2023), GlyphControl (Yang et al. 2024),
and TextDiffuser (Chen et al. 2024). This advancement is
largely attributable to HDLayout’s enhanced capability to
generate more realistic layouts, including curves and slants.
Furthermore, HDLayout exhibits superior layout generation
capabilities compared to TextDiffuser (Chen et al. 2024).
This advantage arises because these methods rely solely on
bounding box layouts, resulting in more uniform and coarse
layouts. In contrast, HDLayout generates Bézier layouts,
which accurately reflect the true layout of the text.

HDLayout
FID (↓)

Image FID Layout FID

w/o Region & Line 115.84 16.474
w/o Region 102.67 16.094

w/o Line 113.13 15.697
Ours (Layout) + ControlNet 88.920 -

Ours (Layout) + GlyphControl 86.842 -
Ours (Full) 78.027 12.343

Table 2: Results of the ablation study. The best results are
highlighted in bold.

Ablation Study
To validate the effectiveness of hierarchical generation over
direct Bézier curve generation, we conducted an ablation
study focusing on the region decoder and line decoder com-
ponents, as presented in Table 2. We can see that the absence
of both region-level and line-level results in the poorest per-
formance in terms of both layout and image quality. It in-
dicates that direct Bézier curve generation faces significant
challenges in achieving optimal results without hierarchical
guidance. When either the region-level or line-level is omit-
ted, the model’s performance improves, suggesting that both
levels play a crucial role in Bézier curve generation. Our
model is also used as plug-and-play guidance to replace the
glyph control in existing works (Ours+ControlNet (Zhang
et al. 2023), Ours+GlyphControl (Yang et al. 2024)). The
results show the overall advantage of our model in visual
text generation. Finally, when the full hierarchical genera-
tion approach is applied, both Image FID and Layout FID
metrics reach their best values, further confirming the effec-
tiveness of using a hierarchical method to indirectly control
Bézier curve generation.

Conclusion
In this paper, we take a step towards arbitrarily shaped visual
text generation. To this end, we propose a new separation
and composition framework that captures the hierarchical
and directional textual layout (i.e., HDLayout) representa-
tion, enabling flexible and controllable visual text generation
from text prompts. Extensive qualitative and quantitative re-
sults show that our model outperforms several baselines on
numerous scenarios with arbitrarily shaped visual text.

As the first attempt towards creating a novel layout rep-
resentation for the arbitrarily shaped visual text generation,
our method still has certain limitations. For small areas des-
ignated for text rendering, our method may not work well
due to the difficulties in determining the accurate character
positions. We believe that better modeling of the textual el-
ement relationships could be an important future direction.

Acknowledgments
This work was partially supported by the Guangdong
Basic and Applied Basic Research Foundation (No.
2022A1515110740), and the National Natural Science
Foundation of China (No. 62302356, No. 62372352, No.
62302367).

3002

References
AI, S. 2024. Stable Diffusion 3: Advanced Text-to-Image
Generation. https://stability.ai/news/stable-diffusion-3.
Black-Forest-Labs. 2024. FLUX.1: A Text-to-Image AI
Model. https://flux-1.ai/.
Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-end object detection
with transformers. In ECCV.
Chen, J.; Huang, Y.; Lv, T.; Cui, L.; Chen, Q.; and Wei,
F. 2024. Textdiffuser: Diffusion models as text painters.
NeurIPS.
Gupta, K.; Lazarow, J.; Achille, A.; Davis, L. S.; Mahade-
van, V.; and Shrivastava, A. 2021. Layouttransformer: Lay-
out generation and completion with self-attention. In ICCV.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. NeurIPS.
Inoue, N.; Kikuchi, K.; Simo-Serra, E.; Otani, M.; and Yam-
aguchi, K. 2023. LayoutDM: Discrete Diffusion Model for
Controllable Layout Generation. In CVPR.
Li, C.; Liu, W.; Guo, R.; Yin, X.; Jiang, K.; Du, Y.; Du,
Y.; Zhu, L.; Lai, B.; Hu, X.; et al. 2022. PP-OCRv3: More
attempts for the improvement of ultra lightweight OCR sys-
tem. arXiv preprint arXiv:2206.03001.
Li, J.; Yang, J.; Hertzmann, A.; Zhang, J.; and Xu, T.
2020. Layoutgan: Synthesizing graphic layouts with vector-
wireframe adversarial networks. PAMI.
Liu, C.; Liu, Y.; Jin, l.; Zhang, S.; Luo, C.; and Wang, Y.
2020. EraseNet: End-to-End Text Removal in the Wild. TIP.
Ma, J.; Zhao, M.; Chen, C.; Wang, R.; Niu, D.; Lu, H.;
and Lin, X. 2023. GlyphDraw: Seamlessly Rendering Text
with Intricate Spatial Structures in Text-to-Image Genera-
tion. arXiv preprint arXiv:2303.17870.
OpenAI. 2023. DALL·E 3. https://openai.com/dall-e-3.
Podell, D.; English, Z.; Lacey, K.; Blattmann, A.; Dockhorn,
T.; Müller, J.; Penna, J.; and Rombach, R. 2023. Sdxl: Im-
proving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952.
Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.;
Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020. Explor-
ing the limits of transfer learning with a unified text-to-text
transformer. JMLR.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-resolution image synthesis with latent
diffusion models. In CVPR.
Saharia, C.; Chan, W.; Saxena, S.; Li, L.; Whang, J.; Denton,
E. L.; Ghasemipour, K.; Gontijo Lopes, R.; Karagol Ayan,
B.; Salimans, T.; et al. 2022. Photorealistic text-to-
image diffusion models with deep language understanding.
NeurIPS.
Tuo, Y.; Xiang, W.; He, J.-Y.; Geng, Y.; and Xie, X. 2023.
Anytext: Multilingual visual text generation and editing.
arXiv preprint arXiv:2311.03054.
Wang, B.; Wu, T.; Zhu, M.; and Du, P. 2022a. Interactive
image synthesis with panoptic layout generation. In CVPR.

Wang, Y.; Pu, G.; Luo, W.; Wang, Y.; Xiong, P.; Kang,
H.; and Lian, Z. 2022b. Aesthetic text logo synthesis via
content-aware layout inferring. In CVPR.
Yang, Q.; Huang, J.; and Lin, W. 2020. Swaptext: Image
based texts transfer in scenes. In CVPR.
Yang, Y.; Gui, D.; Yuan, Y.; Liang, W.; Ding, H.; Hu, H.; and
Chen, K. 2024. GlyphControl: Glyph Conditional Control
for Visual Text Generation. NeurIPS, 36.
Yang, Z.; Liu, D.; Wang, C.; Yang, J.; and Tao, D. 2022.
Modeling image composition for complex scene generation.
In CVPR.
Yu, N.; Chen, C.-C.; Chen, Z.; Meng, R.; Wu, G.; Josel, P.;
Niebles, J. C.; Xiong, C.; and Xu, R. 2022. LayoutDETR:
detection transformer is a good multimodal layout designer.
arXiv preprint arXiv:2212.09877.
Zhang, L.; Rao, A.; Agrawala, M.; et al. 2023. Adding con-
ditional control to text-to-image diffusion models. In ICCV.
Zheng, G.; Zhou, X.; Li, X.; Qi, Z.; Shan, Y.; and Li, X.
2023. Layoutdiffusion: Controllable diffusion model for
layout-to-image generation. In CVPR.
Zhu, Y.; Liu, J.; Gao, F.; Liu, W.; Wang, X.; Wang, P.;
Huang, F.; Yao, C.; and Yang, Z. 2024. Visual text gener-
ation in the wild. ECCV.

3003

